Machine Translation Market Synopsis

The global Machine Translation Market was valued at USD 1111.24 million in 2023 and is likely to reach USD 3501.17 million by 2032, increasing at a CAGR of 13.6% from 2024 to 2032.

Machine translation is the use of artificial intelligence to automatically translate text from one language to another without human intervention. Modern machine translation goes beyond a simple word-for-word translation and conveys the full meaning of the original text in the target language.

  • Indeed, the roots of machine translation can be followed back to the work of the 8th-century Middle easterner cryptographer Al-Kindi, who created procedures for orderly language translation, counting cryptanalysis, recurrence investigation, and probabilistic and measurable information, that have parallels with advanced ones. such machine translation. The thought of machine translation was encourage created within the 17th century when René Descartes proposed a widespread language, in which comparing thoughts from diverse languages would have a single image. The thought of utilizing advanced computers to decipher natural languages was born within the center of the 20th century. 1947 Advertisement in Britain. Booth and Warren Weaver of the Rockefeller Establishment proposed the thought freely. Weaver's 1949 note is particularly outstanding as a exceedingly powerful distribution within the early days of machine translation.
  • The first demonstration of machine translation took place in 1954 on an APEXC machine at Birkbeck College (University of London), where a rudimentary translation from English to French was made. This event was followed by the publication of several articles on the subject and even featured in popular magazines, such as an article by Cleave and Zacharov in the September 1955 issue of Wireless World. At the same time, other applications of computer language processing such as braille reading and writing were developed at Birkbeck College.
  • Rule-based machine translation uses language rules and dictionaries to create translations based on established language rules and structures. These rules define how words and phrases from the source language are converted into the target language. RBMT requires human experts to create and maintain these rules, which can be time-consuming and complex. This often works better in languages ​​with well-defined grammatical rules and less ambiguity and metaphors.Statistical machine translation involves analyzing a large number of bilingual texts to identify patterns and probabilities of accurate translations. Instead of relying on linguistic rules, SMT uses statistical models to determine the most likely translations based on patterns observed in the training data. It aligns source and target language segments to learn translation patterns. SMT works well with larger training data and can handle different language pairs.
  • The statistic shows the size of the machine translation market worldwide, from 2020 to 2023. In 2020, the global machine translation market was estimated to reach 750 million U.S. dollars in size. The market is currently being driven by increasing demands for content localization.

Machine Translation Market Trend Analysis

The Availability of Language Data

  • The availability of language data could be a cornerstone for the progression of machine translation innovation, and a few interconnected patterns are driving its development. Firstly, the broad reach of the web has driven to a blast of multilingual content over various stages, counting websites, social media, blogs, and news articles. This plenitude of digital substance serves as a vast and assorted pool of information for training machine translation models. The rise of user-generated content stages has assist fueled the accessibility of language data. With the expanding participation of people on social media, forums, and online communities, substance is being made in numerous languages, enveloping a wide range of points and styles. This user-generated substance contributes altogether to the lavishness and differences of language data accessible for machine translation preparing. Open data initiatives spearheaded by organizations and governments play an urgent part in making huge datasets freely available. These activities regularly include the discharge of multilingual corpora, parallel texts, and other linguistic assets, which serve as important resources for machine translation research and development efforts.
  • Crowdsourcing and collaborative translation projects too contribute to the extension of language data. By locks in individuals from around the world to interpret and annotate content, these activities facilitate the creation of high-quality datasets that are instrumental in training and assessing machine translation systems. Moreover, specialized companies offering data curation and explanation services play a pivotal part in ensuring the quality and significance of language data utilized for machine learning applications. These companies collect, clean, and comment on language data, hence upgrading its convenience and effectiveness in preparing machine translation models. Government back through language technology initiatives and financing for language asset creation and upkeep advance bolster the accessibility of language data. These activities point not as it were to development machine translation technology but moreover to back language conservation, social trade, and financial development on a global scale.

 Opportunities

E-Commerce and International Business

  • E-commerce and international trade are indeed critical drivers within the development of the machine translation market. As businesses extend globally, they experience the need to communicate with clients, partners, and providers who talk different languages. Machine translation innovation offers a scalable and cost-effective arrangement to bridge these language barriers, facilitating smoother exchanges and intelligent over borders. For e-commerce stages, giving multilingual back is vital for coming to a broader client base and enhancing client encounter. Machine translation empowers real-time translation of item depictions, client surveys, and other substance, allowing businesses to localize their stages effectively and cater to assorted markets. In worldwide business, successful communication is basic for building connections, negotiating deals, and exploring legitimate and regulatory systems over diverse nations and languages.
  • Machine translation tools can help in deciphering emails, contracts, reports, and other archives rapidly and accurately, facilitating smoother collaboration and decision-making forms. Besides, advancements in machine translation technology, such as neural machine translation (NMT), have progressed the quality and familiarity of translations, making them more appropriate for business-critical applications. Generally, the expanding globalization of commerce and commerce operations is driving the appropriation of machine translation arrangements, and e-commerce and international trade sectors are key contributors to the growth of this market.

​​​​​​​

Market Segment Analysis:

Market Segmented based on Product Type, by Deployment Type, by Application, and region.

By Product Type, Neural Machine Translation Is Expected to Dominate the Market During the Forecast Period 2024-2032

By Product Type segmented as Statistical Machine Translation (SMT), Rule-Based Machine Translation (RBMT), Neural Machine Translation (NMT), Example Based Machine Translation (EBMT), Hybrid Machine Translation (HMT)

  • Neural Machine Translation (NMT) has developed as the dominant approach in machine translation due to a few key components. Firstly, NMT systems, fueled by profound learning models like repetitive neural systems (RNNs) or transformers, have illustrated superior translation quality compared to older strategies such as Statistical Machine Translation (SMT) and Rule-Based Machine Translation (RBMT). These NMT models exceed expectations at capturing complex linguistic designs and conditions, coming about in more familiar and precise translations. In addition, NMT systems work on an end-to-end design, streamlining the translation handle by taking care of the entire task inside a single neural arrange. This kills the require for complex include building and arrangement models required by conventional SMT and RBMT frameworks, making NMT models more proficient in both preparing and sending.
  • Another quality of NMT lies in its relevant understanding capabilities. By considering the setting of the whole sentence amid translation, NMT frameworks create more coherent and relevantly appropriate translations, as restricted to translating individual words or expressions in segregation. NMT models too offer scalability and flexibility, being able of dealing with different languages and spaces. Unlike rule-based frameworks that require manual rule creation and support, NMT systems can be prepared on large-scale multilingual datasets, empowering them to handle a wide extend of language sets and translation tasks with negligible human intervention.
  • The accessibility of large-scale preparing information encourage boosts the viability of NMT. With get to to endless parallel corpora and headways in computational assets and profound learning methods, NMT models can be prepared more successfully, driving to higher-quality translations. Moreover, the approach of pre-trained NMT models, leveraging models like BERT and GPT, quickens the improvement of state-of-the-art translation systems. The widespread selection of NMT across industries and the concerted investigate center on advancing NMT execution have contributed to its dominance. Both industry players and academia have intensely contributed in creating and refining NMT systems, driving nonstop improvements in translation quality and scalability.

By Deployment Type, Cloud-Based held the largest share

By Deployment Type segmented as On-Premises, Cloud-Based

  • Cloud-based deployment has emerged as the dominant choice for machine translation systems due to a bunch of compelling components. Firstly, its unparalleled scalability and adaptability offer organizations the capacity to quickly adjust translation assets in reaction to fluctuating request. This flexibility proves especially advantageous for businesses with changing translation needs, permitting them to distribute resources proficiently and guarantee ideal performance at all times., the cost-effectiveness of cloud-based deployment is a noteworthy driver of its dominance. Taking after a pay-as-you-go show, organizations only cause costs for the assets they utilize, eliminating the require for significant forthright speculations in equipment and software related with on-premises arrangement. Also, cloud suppliers frequently offer competitive estimating and long-term utilization rebates, making cloud-based sending monetarily reasonable for organizations of all sizes.
  • The openness and accessibility of cloud-based machine translation systems are paramount. Being available from anyplace with a web connection facilitates seamless get to to translation administrations for conveyed teams and farther specialists. Besides, cloud suppliers ensure high availability and unwavering quality through excess foundation and programmed failover instruments, ensuring continuous get to to translation services. Fast sending and normal upgrades are encouraged by cloud-based sending, empowering organizations to quickly execute machine translation systems with minimal setup exertion. Pre-configured services offered by cloud suppliers streamline deployment processes, whereas regular updates and enhancements guarantee organizations reliably have get to to the latest features and enhancements. Integration with other cloud services further enhances the offer of cloud-based machine translation. Consistent integration with substance management frameworks, client relationship administration stages, and efficiency devices permits organizations to join translation capabilities straightforwardly into existing workflows and applications, significantly boosting in general proficiency and efficiency.
  • The robust security measures and compliance certifications given by driving cloud suppliers in still certainty in organizations with respect to the security of sensitive information and adherence to regulatory prerequisites. Leveraging cloud-based arrangement enables organizations to advantage from enterprise-grade security highlights, including information encryption, get to controls, and danger discovery, without the required for dedicated security infrastructure.

Market Regional Insights:

North America Region is Expected to Dominate the Market Over the Forecast Period

  • North America's dominance within the machine translation advertises stems from a meeting of key variables that have built up the locale as a worldwide pioneer in mechanical development and ability. At the bleeding edge of this dominance is North America's unrivalled culture of mechanical advancement, especially epitomized by the United States and its famous Silicon Valley. Here, cutting-edge investigate and improvement in artificial intelligence (AI) and machine learning (ML) thrive, initiated by industry giants like Google, Microsoft, Amazon, and Facebook, all of which call North America home. These companies not as it were driving advancement in machine translation technology but moreover fuel headways in AI and ML through considerable ventures in inquire about and improvement. Further bolstering North America's dominance are its prestigious scholastic and research teach, which brag world-renowned programs in AI and ML.
  • Teach such as Stanford College, Massachusetts Founded of Innovation (MIT), Carnegie Mellon College, and the College of Toronto are hotbeds of groundbreaking investigate in machine translation and common language preparing (NLP). Through near collaboration between the scholarly world and industry, knowledge exchange is encouraged, cultivating an environment conducive to innovation and innovative progression. North America draws in best ability from around the world within the areas of AI, ML, and NLP. The locale benefits from a differing pool of skilled professionals, including researchers, engineers, and information researchers, who contribute their mastery to the continuous improvement of machine translation technology. In addition, North American companies have get to to talented workers through programs such as the H-1B visa, encourage enriching the ability pool and fortifying the region's competitive edge. North America's critical market size and request for language administrations, driven by its differing populace and the nearness of multinational companies over different industries, make a prolific ground for machine translation adoption and development. With strong showcase request, North American companies are well-positioned to meet the wants of clients in divisions such as innovation, healthcare, fund, and e-commerce, cementing their dominance within the global machine translation market.
  • North America benefits from get to to inexhaustible capital and investment opportunities, fueling the development and development of companies within the AI and machine translation space. Wander capital firms, private value financial specialists, and corporate sponsor within the locale effectively finance new businesses and rising players, giving the money related assets necessary for scaling operations, driving development, and growing market reach. This deluge of speculation assists cements North America's position as the prevailing constrain in the machine translation advertise, clearing the way for proceeded administration and advancement within the field.

Market Top Key Players:

The top key companies in the Machine Translation Market are:

  • Google (United States)
  • Microsoft (United States)
  • Amazon (United States)
  • IBM (United States)
  • Facebook (United States)
  • DeepL (Germany)
  • SYSTRAN (France)
  • SDL (United Kingdom)
  • Lionbridge (United States)
  • Alibaba (China)
  • Tencent (China)
  • Baidu (China)
  • Huawei (China)
  • Yandex (Russia)
  • PROMT (Russia)
  • Unbabel (Portugal)
  • Memsource (Czech Republic)
  • Iconic Translation Machines (Ireland)
  • Lilt (United States)
  • MateCat (Italy)
  • Smartcat (United States)
  • TransPerfect (United States)
  • Welocalize (United States)
  • Moravia (Czech Republic)
  • Gengo (Japan)
  • LanguageWire (Denmark)
  • TextMaster (France) and Other Major Players.

Key Industry Developments in the Market:

  • In June 2024, Silicon Motion have revealed a new Machine Translation that is more powerful and efficient than their competitors’ offerings. In Q4 2024, Silicon Motion will be launching their SM2508 Machine Translation, a low power PCIe 5.0 Machine Translation that uses TSMC’s 6nm lithography technology. With peak power consumption of 3.5W, Silicon Motion’s new PCIe 5.0 Machine Translation is much cooler running than other high-end PCIe 5.0 controllers. That means that new drives using Silicon Motion’s new Machine Translation are unlikely to need advanced cooling solutions.
  • In Feb 2024, Samsung recently expanded its lineup of solid-state drives with the launch of its latest 990 EVO SSD. With better energy efficiency, the SSD 990 EVO claims to deliver powerful performance which is designed to enhance everyday computing experiences like gaming, work and video/photo editing. The SSD is equipped with a sequential read/write speed of up to 5,000 MB/s and up to 4,200 MB/s.

Global Machine Translation Market

Base Year:

2023

Forecast Period:

2024-2032

Historical Data:

2017-2023

Market Size In 2023:

USD 1111.24 Mn

Forecast Period 2024-32 CAGR:

13.6%

Market Size In 2032:

USD 3501.17 Mn

Segments Covered:

By Type

  • Statistical Machine Translation (SMT)
  • Rule-Based Machine Translation (RBMT)
  • Neural Machine Translation (NMT)
  • Example Based Machine Translation (EBMT)
  • Hybrid Machine Translation (HMT)

By Deployment Type

  • On-Premises
  • Cloud-Based

By Application

  • BFSI
  • Automotive
  • Electronics
  • Healthcare
  • IT and Telecommunications
  • Military and Defense
  • Media and Entertainment and others

By Region

  • North America (U.S., Canada, Mexico)
  • Eastern Europe (Bulgaria, The Czech Republic, Hungary, Poland, Romania, Rest Of Eastern Europe)
  • Western Europe (Germany, Uk, France, Netherlands, Italy, Russia, Spain, Rest of Western Europe)
  • Asia Pacific (China, India, Japan, South Korea, Malaysia, Thailand, Vietnam, The Philippines, Australia, New Zealand, Rest of Apac)
  • Middle East & Africa (Turkey, Bahrain, Kuwait, Saudi Arabia, Qatar, Uae, Israel, South Africa)
  • South America (Brazil, Argentina, Rest Of Sa)

Key Market Drivers:

  • The Availability of Language Data

Key Market Restraints:

  • Domain Specific Adaption

Key Opportunities:

  • E-Commerce and International Business

Companies Covered in The Report:

Google (United States),Microsoft (United States),Amazon (United States),IBM (United States),Facebook (United States),DeepL (Germany)

  1. INTRODUCTION
    1. RESEARCH OBJECTIVES
    2. RESEARCH METHODOLOGY
    3. RESEARCH PROCESS
    4. SCOPE AND COVERAGE
      1. Market Definition
      2. Key Questions Answered
    5. MARKET SEGMENTATION
  2. EXECUTIVE SUMMARY
  3. MARKET OVERVIEW
  4. GROWTH OPPORTUNITIES BY SEGMENT
  5. MARKET LANDSCAPE
    1. PORTER’S FIVE FORCES ANALYSIS
      1. Bargaining Power Of Supplier
      2. Threat Of New Entrants
      3. Threat Of Substitutes
      4. Competitive Rivalry
      5. Bargaining Power Among Buyers
    2. INDUSTRY VALUE CHAIN ANALYSIS
    3. MARKET DYNAMICS
      1. Drivers
      2. Restraints
      3. Opportunities
      4. Challenges
    4. MARKET TREND ANALYSIS
    5. REGULATORY LANDSCAPE
    6. PESTLE ANALYSIS
    7. PRICE TREND ANALYSIS
    8. PATENT ANALYSIS
    9. TECHNOLOGY EVALUATION
    10. MARKET IMPACT OF THE RUSSIA-UKRAINE WAR
      1. Geopolitical Market Disruptions
      2. Supply Chain Disruptions
      3. Instability in Emerging Markets
    11. ECOSYSTEM
  6. MACHINE TRANSLATION MARKET BY TYPE (2017-2030)
    1. MACHINE TRANSLATION MARKET SNAPSHOT AND GROWTH ENGINE
    2. MARKET OVERVIEW
    3. NEURAL MACHINE TRANSLATION (NMT)
      1. Introduction And Market Overview
      2. Historic And Forecasted Market Size in Value (2017-2030F)
      3. Historic And Forecasted Market Size in Volume (2017-2030F)
      4. Key Market Trends, Growth Factors And Opportunities
      5. Geographic Segmentation Analysis
    4. STATISTICAL MACHINE TRANSLATION (SMT)
    5. RULE-BASED MACHINE TRANSLATION (RBMT)
    6. EXAMPLE BASED MACHINE TRANSLATION (EBMT)
    7. HYBRID MACHINE TRANSLATION (HMT)
  7. MACHINE TRANSLATION MARKET BY DEPLOYMENT TYPE (2017-2030)
    1. MACHINE TRANSLATION MARKET SNAPSHOT AND GROWTH ENGINE
    2. MARKET OVERVIEW
    3. CLOUD-BASED
      1. Introduction And Market Overview
      2. Historic And Forecasted Market Size in Value (2017-2030F)
      3. Historic And Forecasted Market Size in Volume (2017-2030F)
      4. Key Market Trends, Growth Factors And Opportunities
      5. Geographic Segmentation Analysis
    4. ON-PREMISES
  8. MACHINE TRANSLATION MARKET BY APPLICATION (2017-2030)
    1. MACHINE TRANSLATION MARKET SNAPSHOT AND GROWTH ENGINE
    2. MARKET OVERVIEW
    3. BFSI
      1. Introduction And Market Overview
      2. Historic And Forecasted Market Size in Value (2017-2030F)
      3. Historic And Forecasted Market Size in Volume (2017-2030F)
      4. Key Market Trends, Growth Factors And Opportunities
      5. Geographic Segmentation Analysis
    4. AUTOMOTIVE
    5. ELECTRONICS
    6. HEALTHCARE
    7. IT AND TELECOMMUNICATIONS
    8. MILITARY AND DEFENSE
    9. MEDIA AND ENTERTAINMENT
  9. COMPANY PROFILES AND COMPETITIVE ANALYSIS
    1. COMPETITIVE LANDSCAPE
      1. Competitive Benchmarking
      2. MACHINE TRANSLATION Market Share By Manufacturer (2023)
      3. Industry BCG Matrix
      4. Heat Map Analysis
      5. Mergers & Acquisitions
    2. GOOGLE
      1. Company Overview
      2. Key Executives
      3. Company Snapshot
      4. Role of the Company in the Market
      5. Sustainability and Social Responsibility
      6. Operating Business Segments
      7. Product Portfolio
      8. Business Performance (Production Volume, Sales Volume, Sales Margin, Production Capacity, Capacity Utilization Rate)
      9. Key Strategic Moves And Recent Developments
      10. SWOT Analysis
    3. MICROSOFT (UNITED STATES)
    4. AMAZON (UNITED STATES)
    5. IBM (UNITED STATES)
    6. FACEBOOK (UNITED STATES)
    7. DEEPL (GERMANY)
    8. SYSTRAN (FRANCE)
    9. SDL (UNITED KINGDOM)
    10. LIONBRIDGE (UNITED STATES)
    11. ALIBABA (CHINA)
    12. TENCENT (CHINA)
    13. BAIDU (CHINA)
    14. HUAWEI (CHINA)
    15. YANDEX (RUSSIA)
    16. PROMT (RUSSIA)
    17. UNBABEL (PORTUGAL)
    18. MEMSOURCE (CZECH REPUBLIC)
    19. ICONIC TRANSLATION MACHINES (IRELAND)
    20. LILT (UNITED STATES)
    21. MATECAT (ITALY)
    22. SMARTCAT (UNITED STATES)
    23. TRANSPERFECT (UNITED STATES)
    24. WELOCALIZE (UNITED STATES)
    25. MORAVIA (CZECH REPUBLIC)
    26. GENGO (JAPAN)
    27. LANGUAGEWIRE (DENMARK)
    28. TEXTMASTER (FRANCE)
  10. GLOBAL MACHINE TRANSLATION MARKET BY REGION
    1. OVERVIEW
    2. NORTH AMERICA
      1. Key Market Trends, Growth Factors And Opportunities
      2. Key Manufacturers
      3. Historic And Forecasted Market Size By TYPE
      4. Historic And Forecasted Market Size By DEPLOYMENT TYPE
      5. Historic And Forecasted Market Size By APPLICATION
      6. Historic And Forecasted Market Size By Country
        1. USA
        2. Canada
        3. Mexico
    3. EASTERN EUROPE
      1. Key Market Trends, Growth Factors And Opportunities
      2. Key Manufacturers
      3. Historic And Forecasted Market Size By Segments
      4. Historic And Forecasted Market Size By Country
        1. Russia
        2. Bulgaria
        3. The Czech Republic
        4. Hungary
        5. Poland
        6. Romania
        7. Rest Of Eastern Europe
    4. WESTERN EUROPE
      1. Key Market Trends, Growth Factors And Opportunities
      2. Key Manufacturers
      3. Historic And Forecasted Market Size By Segments
      4. Historic And Forecasted Market Size By Country
        1. Germany
        2. United Kingdom
        3. France
        4. The Netherlands
        5. Italy
        6. Spain
        7. Rest Of Western Europe
    5. ASIA PACIFIC
      1. Key Market Trends, Growth Factors And Opportunities
      2. Key Manufacturers
      3. Historic And Forecasted Market Size By Segments
      4. Historic And Forecasted Market Size By Country
        1. China
        2. India
        3. Japan
        4. South Korea
        5. Malaysia
        6. Thailand
        7. Vietnam
        8. The Philippines
        9. Australia
        10. New-Zealand
        11. Rest Of APAC
    6. MIDDLE EAST & AFRICA
      1. Key Market Trends, Growth Factors And Opportunities
      2. Key Manufacturers
      3. Historic And Forecasted Market Size By Segments
      4. Historic And Forecasted Market Size By Country
        1. Turkey
        2. Bahrain
        3. Kuwait
        4. Saudi Arabia
        5. Qatar
        6. UAE
        7. Israel
        8. South Africa
    7. SOUTH AMERICA
      1. Key Market Trends, Growth Factors And Opportunities
      2. Key Manufacturers
      3. Historic And Forecasted Market Size By Segments
      4. Historic And Forecasted Market Size By Country
        1. Brazil
        2. Argentina
        3. Rest of South America
  11. INVESTMENT ANALYSIS
  12. ANALYST VIEWPOINT AND CONCLUSION
    1. Recommendations and Concluding Analysis
    2. Potential Market Strategies

Global Machine Translation Market

Base Year:

2023

Forecast Period:

2024-2032

Historical Data:

2017-2023

Market Size In 2023:

USD 1111.24 Mn

Forecast Period 2024-32 CAGR:

13.6%

Market Size In 2032:

USD 3501.17 Mn

Segments Covered:

By Type

  • Statistical Machine Translation (SMT)
  • Rule-Based Machine Translation (RBMT)
  • Neural Machine Translation (NMT)
  • Example Based Machine Translation (EBMT)
  • Hybrid Machine Translation (HMT)

By Deployment Type

  • On-Premises
  • Cloud-Based

By Application

  • BFSI
  • Automotive
  • Electronics
  • Healthcare
  • IT and Telecommunications
  • Military and Defense
  • Media and Entertainment and others

By Region

  • North America (U.S., Canada, Mexico)
  • Eastern Europe (Bulgaria, The Czech Republic, Hungary, Poland, Romania, Rest Of Eastern Europe)
  • Western Europe (Germany, Uk, France, Netherlands, Italy, Russia, Spain, Rest of Western Europe)
  • Asia Pacific (China, India, Japan, South Korea, Malaysia, Thailand, Vietnam, The Philippines, Australia, New Zealand, Rest of Apac)
  • Middle East & Africa (Turkey, Bahrain, Kuwait, Saudi Arabia, Qatar, Uae, Israel, South Africa)
  • South America (Brazil, Argentina, Rest Of Sa)

Key Market Drivers:

  • The Availability of Language Data

Key Market Restraints:

  • Domain Specific Adaption

Key Opportunities:

  • E-Commerce and International Business

Companies Covered in The Report:

Google (United States),Microsoft (United States),Amazon (United States),IBM (United States),Facebook (United States),DeepL (Germany)

Please Wait...

Frequently Asked Questions :

What would be the forecast period in the Machine Translation Market research report?

The forecast period in the Machine Translation Market research report is 2024-2032.

Who are the key players in the Machine Translation Market?

Google (United States),Microsoft (United States),Amazon (United States),IBM (United States),Facebook (United States),DeepL (Germany),SYSTRAN (France),SDL (United Kingdom),Lionbridge (United States),Alibaba (China),Tencent (China),Baidu (China),Huawei (China),Yandex (Russia),PROMT (Russia),Unbabel (Portugal),Memsource (Czech Republic),Iconic Translation Machines (Ireland),Lilt (United States),MateCat (Italy),Smartcat (United States),TransPerfect (United States),Welocalize (United States),Moravia (Czech Republic),Gengo (Japan),LanguageWire (Denmark),TextMaster (France) and Other Major Players.

What are the segments of the Machine Translation Market?

The Machine Translation Market is segmented into Product Type, by Deployment Type, by Application, and region. By Type (Statistical Machine Translation (SMT), Rule-Based Machine Translation (RBMT), Neural Machine Translation (NMT), Example Based Machine Translation (EBMT), Hybrid Machine Translation (HMT)), By Deployment Type (On-Premises, Cloud-Based), By Application (BFSI, Automotive, Electronics, Healthcare, IT and Telecommunications, Military and Defense, Media and Entertainment, Others) and by region. By region, it is analyzed across North America (U.S.; Canada; Mexico), Eastern Europe (Bulgaria; The Czech Republic; Hungary; Poland; Romania; Rest of Eastern Europe), Western Europe (Germany; UK; France; Netherlands; Italy; Russia; Spain; Rest of Western Europe), Asia-Pacific (China; India; Japan; Southeast Asia, etc.), South America (Brazil; Argentina, etc.), Middle East & Africa (Saudi Arabia; South Africa, etc.).

What is the Machine Translation Market?

Machine translation is the use of artificial intelligence to automatically translate text from one language to another without human intervention. Modern machine translation goes beyond a simple word-for-word translation and conveys the full meaning of the original text in the target language.

How big is the Machine Translation Market?

The global Machine Translation Market was valued at USD 1111.24 million in 2023 and is likely to reach USD 3501.17 million by 2032, increasing at a CAGR of 13.6% from 2024 to 2032.