Data Center Accelerator Market Synopsis:
Data Center Accelerator Market Size Was Valued at USD 86.06 Billion in 2023, and is Projected to Reach USD 786.54 Billion by 2032, Growing at a CAGR of 27.87% From 2024-2032.
The Data Center Accelerator Market refers to the segment within the global market that is involved with the provision of hardware and software technologies that would optimise data centers. Such accelerators as GPUs, FPGAs, and ASICs are utilized in the applications to perform computations and optimizations, enhance energy efficiency and optimize data processing, and analytics. They are also implemented in more cloud computing, artificial intelligence, machine learning and big data analytics applications to cater to the boosting data traffic and the need for higher amount of computation power and lower latency time.
Data Center Accelerator Market is currently in the growth phase with immense growth opportunities arising due to demand in sectors like cloud computing, Artificial Intelligence (AI), Machine Learning (ML), and Big data analytics. GPUs, FPGAs, and ASICs have become critical elements of data center infrastructures because of their capacity to improve computational performance, lower latencies, and improve power use efficiency. This market growth has been boosted more by the growing use of edge computing and the 5G which need faster processing of data and real-time analytics.
The variety of data center accelerator solutions, which meets different applications and customers’ requirements, distinguishes the market. These participants include incumbent semiconductor companies as well as new market entrants operating on the operation of narrow, but targeted use-cases. Another driver within the competitive structure is also the numerous strategic alliances, joint ventures or even mergers and acquisitions activities whose purpose is to increase the number of offered products and overall market presence. Moving to the future, the market is likely to grow steadily given increased focus on analytics and reinforcement of businesses with analytics and AI support systems. Besides, at present, enhancements in accelerator technologies like a larger memory bandwidth and low power consumption are bound to push the market’s growth even further.

Data Center Accelerator Market Trend Analysis:
Demand for Enhanced Data Center Efficiency
- To meet the rising data processing needs of Artificial Intelligence, ML, big data analytics and deep learning techniques, organizations are invariably paying more attention to improving their data center performance and density. Because of the increasing use of these technologies, there is need to accelerate data processing techniques. That is why enterprises are now seeking accelerator solutions such as GPUs, FPGAs and TPUs capable of providing the required performance for certain workloads and delivering low latency. These accelerators are designed to handle those parallel processing tasks which are important in processing large volume, real-time data used in AI and Machine Learning.
- The deployment of data center accelerators is also aimed at mirroring new trending like edge compute and 5G. Low latency data processing is essential in edge computing because data is processed near where it is created, which accelerators can best achieve. Further, with the growing adoption of 5G networks, one of the critical application areas is the deployment of low latency, high performance computing at the network edge to propel the demand for accelerators in Data centers. These trends re-emphasize the value of data center accelerators in allowing faster, more adaptive and effective data processing environment.
Increasing Demand for High-Performance Computing and AI Workloads
- The overal growth of data center accelerator market is also profoundly influenced by the high-performance Computing and artificial intelligence workloads. It is due to these workloads need efficient acceleration solutions to meet demanding computations, data handling, and analytics. Since data centers have applied accelerators like GPUs, FPGAs, or AI chips, the demand for solutions that could further a processor’s performance, minimize latency, and increase effectiveness has risen. This trend provides greater market dynamism and room for influencing the development of more potent, efficient and cheap accelerators capable of fulfilling the performance demands of present-day data center services.
- Similarly, the availability of new cloud services and deployment of edge nodes that require data center accelerators are pushing the demand for new devices forward. When more data is produced at the edge and requires processing in near real-time, there is a demand for highly available and adaptive solutions to meet these demands for data processing. These goals are achievable through accelerators and can therefore be viewed as a crucial part of next generation data centers. This again goes to show that firms with the capability to create higher value in the design of accelerators, and those that are able to integrate them into cloud and edge solutions are likely to reap big within this market.
Data Center Accelerator Market Segment Analysis:
Data Center Accelerator Market Segmented on the basis of By Processor, Type, Application and Region.
By Processor, GPU segment is expected to dominate the market during the forecast period
- GPUs, originally known as Graphics Processing Units, are processors that were originally developed for handling graphical computation that have greatly adapted to serving artificial intelligence (AI) and machine learning demands in data centres. Their ability to process many signals in parallel to each other makes them ideal especially for deep learning applications where data sequences are processed in parallel to each other. In data centers, GPUs are nowadays implemented for such workloads as image recognition, natural language processing, and self-driving cars – data sets that require a company’s rapid processing. Due to the capability of performing many instructions simultaneously, which is attained by executing high throughputs without being constrained by the traditional CPU threading, GPUs are used to enhance AI tasks in large data center infrastructures.
- When adopting the deep learning approach, GPUs have a quite significant role to perform by virtue of their effectiveness in accomplishing complicated computations, which in most of the time entail handling large volumes of data. These processors are most suitable for training of neural networks which form the core of artificial intelligence. For example, GPUs are capable of training through thousands of epochs in less time than using the traditional CPUs; an important feature that would solve problems such as image classification, object detection as well as language translation. The parallel processing nature also makes them efficient when it comes to the implementation of large dataset needed in future applications like, autonomous driving and robotics where decision-making is critical. It is considered that the necessity of GPUs for deep learning will only increase in the future as AI progresses across various domains becoming the key component of the data centers for AI.
By Application, Deep Learning Training segment expected to held the largest share
- Training the deep learning model consumes lot of computational power because of the large sizes of the models and the datasets to be used. GPUs are incorporated in this application because they are always best suited to handle parallel processing issues that are characterised by the processing of several datasstreams at a go. This capability is important for training high volume deep learning models that readjust their weights frequently and process data frequently. GPUs offer the kind of performance necessary to perform thousands of epochs fast making them ideal for deep learning activities including image and speech recognition and self-driving automobiles. As for other kinds of accelerators, FPGAs and ASICs are employed in deep learning training scenarios that require, for example, model acceleration or inference. Such specialised processors can be configured to operate in specific sections of the deep learning framework, enhancing its operating capability.
- Training deep learning networks require elements such as GPUs, FPGAs and ASICs, which are available in the HPC data centers. These data centers are supposed to offer a high throughput and a low latency which are important in training large scale models and training datasets. The integration of varying processors ensures that the HPC data centers meet the needs of deep learning, across science, simulations, and Artificial Intelligence research. Through these target processors, HPC data center have been able to optimize several computationally intensive models and provide the necessary platform for extensive deep learning. This makes them credible for ambitions that involve huge computational processes like image analysis, genetics and quantitative modeling.
Data Center Accelerator Market Regional Insights:
North America is Expected to Dominate the Market Over the Forecast period
- In North America, the United States is the largest market in terms of due center accelerator market due to some of the biggest investments from cloud service providers and big enterprises. Today, these organizations are employing data centers, especially for delivering a variety of access to a suite of applications such as artificial intelligence, big data, and machine learning. Specifically, the high readiness in the technological base and hardware and software support for an extensive use of IT tools, as well as the high level of technologies and components implemented in accelerators and primarily in GPUs, FPGAs, and processors for AI applications support the related technologies and their broad application. In addition, North America boasts of early adoption of 5G technology which is essential for the growth of the data center accelerator market due to high data transfer rates which are useful when handling the increased computational requirements of new technologies. High performance accelerators are in higher demand due to the region’s focus on innovation and adoption of advanced data analysis to make decision.
- Though the SC is well developed in the United States, it has a diverse infrastructure to support these sophisticated data center technologies. Major cloud solutions such as AWS, Microsoft Azure and Google cloud leading the charge by injecting most of their capital towards increasing their data centre capabilities to support emerging large-scale AI and machine learning workloads. This has been a major influence on the market for data center accelerators because such technologies are instrumental in improving the speed, or clock rate, of data center operations, and lowering latency. Besides, growing emphasis on digital transformation along with the rising count of edge computing applications only add to the need for potent data center accelerators in North America.
Active Key Players in the Data Center Accelerator Market:
- Advanced Micro Devices, Inc. (USA)
- Dell Inc. (USA)
- IBM Corporation (USA)
- Intel Corporation (USA)
- Lattice Semiconductor (USA)
- Lenovo Ltd. (China)
- Marvell Technology Inc. (USA)
- Microchip Technology Inc. (USA)
- Micron Technology, Inc. (USA)
- NEC Corporation (Japan)
- NVIDIA Corporation (USA)
- Qualcomm Incorporated (USA)
- Synopsys Inc. (USA)
- Other Active Players
|
Global Data Center Accelerator Market |
|||
|
Base Year: |
2023 |
Forecast Period: |
2024-2032 |
|
Historical Data: |
2017 to 2023 |
Market Size in 2023: |
USD 86.06 Billion |
|
Forecast Period 2024-32 CAGR: |
27.87% |
Market Size in 2032: |
USD 786.54 Billion |
|
|
By Processor |
|
|
|
By Type |
|
||
|
By Application |
|
||
|
By Region |
|
||
|
Key Market Drivers: |
|
||
|
Key Market Restraints: |
|
||
|
Key Opportunities: |
|
||
|
Companies Covered in the report: |
|
||
Chapter 1: Introduction
1.1 Scope and Coverage
Chapter 2:Executive Summary
Chapter 3: Market Landscape
3.1 Market Dynamics
3.1.1 Drivers
3.1.2 Restraints
3.1.3 Opportunities
3.1.4 Challenges
3.2 Market Trend Analysis
3.3 PESTLE Analysis
3.4 Porter's Five Forces Analysis
3.5 Industry Value Chain Analysis
3.6 Ecosystem
3.7 Regulatory Landscape
3.8 Price Trend Analysis
3.9 Patent Analysis
3.10 Technology Evolution
3.11 Investment Pockets
3.12 Import-Export Analysis
Chapter 4: Data Center Accelerator Market by Processor
4.1 Data Center Accelerator Market Snapshot and Growth Engine
4.2 Data Center Accelerator Market Overview
4.3 GPU
4.3.1 Introduction and Market Overview
4.3.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
4.3.3 Key Market Trends, Growth Factors and Opportunities
4.3.4 GPU: Geographic Segmentation Analysis
4.4 CPU
4.4.1 Introduction and Market Overview
4.4.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
4.4.3 Key Market Trends, Growth Factors and Opportunities
4.4.4 CPU: Geographic Segmentation Analysis
4.5 FPGA and ASIC
4.5.1 Introduction and Market Overview
4.5.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
4.5.3 Key Market Trends, Growth Factors and Opportunities
4.5.4 FPGA and ASIC: Geographic Segmentation Analysis
Chapter 5: Data Center Accelerator Market by Type
5.1 Data Center Accelerator Market Snapshot and Growth Engine
5.2 Data Center Accelerator Market Overview
5.3 HPC Data Center and Cloud Data Center
5.3.1 Introduction and Market Overview
5.3.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
5.3.3 Key Market Trends, Growth Factors and Opportunities
5.3.4 HPC Data Center and Cloud Data Center: Geographic Segmentation Analysis
Chapter 6: Data Center Accelerator Market by Application
6.1 Data Center Accelerator Market Snapshot and Growth Engine
6.2 Data Center Accelerator Market Overview
6.3 Deep Learning Training
6.3.1 Introduction and Market Overview
6.3.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
6.3.3 Key Market Trends, Growth Factors and Opportunities
6.3.4 Deep Learning Training: Geographic Segmentation Analysis
6.4 Public Cloud Interface and Enterprise Interface
6.4.1 Introduction and Market Overview
6.4.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
6.4.3 Key Market Trends, Growth Factors and Opportunities
6.4.4 Public Cloud Interface and Enterprise Interface: Geographic Segmentation Analysis
Chapter 7: Company Profiles and Competitive Analysis
7.1 Competitive Landscape
7.1.1 Competitive Benchmarking
7.1.2 Data Center Accelerator Market Share by Manufacturer (2023)
7.1.3 Industry BCG Matrix
7.1.4 Heat Map Analysis
7.1.5 Mergers and Acquisitions
7.2 ADVANCED MICRO DEVICES INC.
7.2.1 Company Overview
7.2.2 Key Executives
7.2.3 Company Snapshot
7.2.4 Role of the Company in the Market
7.2.5 Sustainability and Social Responsibility
7.2.6 Operating Business Segments
7.2.7 Product Portfolio
7.2.8 Business Performance
7.2.9 Key Strategic Moves and Recent Developments
7.2.10 SWOT Analysis
7.3 DELL INC.
7.4 IBM CORPORATION
7.5 INTEL CORPORATION
7.6 LATTICE SEMICONDUCTOR
7.7 LENOVO LTD.
7.8 MARVELL TECHNOLOGY INC.
7.9 MICROCHIP TECHNOLOGY INC.
7.10 MICRON TECHNOLOGY INC.
7.11 NEC CORPORATION
7.12 NVIDIA CORPORATION
7.13 QUALCOMM INCORPORATED
7.14 SYNOPSYS INC
7.15 OTHER ACTIVE PLAYERS
Chapter 8: Global Data Center Accelerator Market By Region
8.1 Overview
8.2. North America Data Center Accelerator Market
8.2.1 Key Market Trends, Growth Factors and Opportunities
8.2.2 Top Key Companies
8.2.3 Historic and Forecasted Market Size by Segments
8.2.4 Historic and Forecasted Market Size By Processor
8.2.4.1 GPU
8.2.4.2 CPU
8.2.4.3 FPGA and ASIC
8.2.5 Historic and Forecasted Market Size By Type
8.2.5.1 HPC Data Center and Cloud Data Center
8.2.6 Historic and Forecasted Market Size By Application
8.2.6.1 Deep Learning Training
8.2.6.2 Public Cloud Interface and Enterprise Interface
8.2.7 Historic and Forecast Market Size by Country
8.2.7.1 US
8.2.7.2 Canada
8.2.7.3 Mexico
8.3. Eastern Europe Data Center Accelerator Market
8.3.1 Key Market Trends, Growth Factors and Opportunities
8.3.2 Top Key Companies
8.3.3 Historic and Forecasted Market Size by Segments
8.3.4 Historic and Forecasted Market Size By Processor
8.3.4.1 GPU
8.3.4.2 CPU
8.3.4.3 FPGA and ASIC
8.3.5 Historic and Forecasted Market Size By Type
8.3.5.1 HPC Data Center and Cloud Data Center
8.3.6 Historic and Forecasted Market Size By Application
8.3.6.1 Deep Learning Training
8.3.6.2 Public Cloud Interface and Enterprise Interface
8.3.7 Historic and Forecast Market Size by Country
8.3.7.1 Russia
8.3.7.2 Bulgaria
8.3.7.3 The Czech Republic
8.3.7.4 Hungary
8.3.7.5 Poland
8.3.7.6 Romania
8.3.7.7 Rest of Eastern Europe
8.4. Western Europe Data Center Accelerator Market
8.4.1 Key Market Trends, Growth Factors and Opportunities
8.4.2 Top Key Companies
8.4.3 Historic and Forecasted Market Size by Segments
8.4.4 Historic and Forecasted Market Size By Processor
8.4.4.1 GPU
8.4.4.2 CPU
8.4.4.3 FPGA and ASIC
8.4.5 Historic and Forecasted Market Size By Type
8.4.5.1 HPC Data Center and Cloud Data Center
8.4.6 Historic and Forecasted Market Size By Application
8.4.6.1 Deep Learning Training
8.4.6.2 Public Cloud Interface and Enterprise Interface
8.4.7 Historic and Forecast Market Size by Country
8.4.7.1 Germany
8.4.7.2 UK
8.4.7.3 France
8.4.7.4 The Netherlands
8.4.7.5 Italy
8.4.7.6 Spain
8.4.7.7 Rest of Western Europe
8.5. Asia Pacific Data Center Accelerator Market
8.5.1 Key Market Trends, Growth Factors and Opportunities
8.5.2 Top Key Companies
8.5.3 Historic and Forecasted Market Size by Segments
8.5.4 Historic and Forecasted Market Size By Processor
8.5.4.1 GPU
8.5.4.2 CPU
8.5.4.3 FPGA and ASIC
8.5.5 Historic and Forecasted Market Size By Type
8.5.5.1 HPC Data Center and Cloud Data Center
8.5.6 Historic and Forecasted Market Size By Application
8.5.6.1 Deep Learning Training
8.5.6.2 Public Cloud Interface and Enterprise Interface
8.5.7 Historic and Forecast Market Size by Country
8.5.7.1 China
8.5.7.2 India
8.5.7.3 Japan
8.5.7.4 South Korea
8.5.7.5 Malaysia
8.5.7.6 Thailand
8.5.7.7 Vietnam
8.5.7.8 The Philippines
8.5.7.9 Australia
8.5.7.10 New Zealand
8.5.7.11 Rest of APAC
8.6. Middle East & Africa Data Center Accelerator Market
8.6.1 Key Market Trends, Growth Factors and Opportunities
8.6.2 Top Key Companies
8.6.3 Historic and Forecasted Market Size by Segments
8.6.4 Historic and Forecasted Market Size By Processor
8.6.4.1 GPU
8.6.4.2 CPU
8.6.4.3 FPGA and ASIC
8.6.5 Historic and Forecasted Market Size By Type
8.6.5.1 HPC Data Center and Cloud Data Center
8.6.6 Historic and Forecasted Market Size By Application
8.6.6.1 Deep Learning Training
8.6.6.2 Public Cloud Interface and Enterprise Interface
8.6.7 Historic and Forecast Market Size by Country
8.6.7.1 Turkiye
8.6.7.2 Bahrain
8.6.7.3 Kuwait
8.6.7.4 Saudi Arabia
8.6.7.5 Qatar
8.6.7.6 UAE
8.6.7.7 Israel
8.6.7.8 South Africa
8.7. South America Data Center Accelerator Market
8.7.1 Key Market Trends, Growth Factors and Opportunities
8.7.2 Top Key Companies
8.7.3 Historic and Forecasted Market Size by Segments
8.7.4 Historic and Forecasted Market Size By Processor
8.7.4.1 GPU
8.7.4.2 CPU
8.7.4.3 FPGA and ASIC
8.7.5 Historic and Forecasted Market Size By Type
8.7.5.1 HPC Data Center and Cloud Data Center
8.7.6 Historic and Forecasted Market Size By Application
8.7.6.1 Deep Learning Training
8.7.6.2 Public Cloud Interface and Enterprise Interface
8.7.7 Historic and Forecast Market Size by Country
8.7.7.1 Brazil
8.7.7.2 Argentina
8.7.7.3 Rest of SA
Chapter 9 Analyst Viewpoint and Conclusion
9.1 Recommendations and Concluding Analysis
9.2 Potential Market Strategies
Chapter 10 Research Methodology
10.1 Research Process
10.2 Primary Research
10.3 Secondary Research
|
Global Data Center Accelerator Market |
|||
|
Base Year: |
2023 |
Forecast Period: |
2024-2032 |
|
Historical Data: |
2017 to 2023 |
Market Size in 2023: |
USD 86.06 Billion |
|
Forecast Period 2024-32 CAGR: |
27.87% |
Market Size in 2032: |
USD 786.54 Billion |
|
|
By Processor |
|
|
|
By Type |
|
||
|
By Application |
|
||
|
By Region |
|
||
|
Key Market Drivers: |
|
||
|
Key Market Restraints: |
|
||
|
Key Opportunities: |
|
||
|
Companies Covered in the report: |
|
||


