Operational Analytics Market Synopsis

Operational Analytics Market Size Was Valued at USD 9.71 Billion in 2023, and is Projected to Reach USD 31.71 Billion by 2032, Growing at a CAGR of 14.06% From 2024-2032.

The operational analytics market refers to the practice of using various techniques and tools to analyze operational data in real-time to gain insights, make informed decisions, and optimize business processes. It involves the collection, processing, and analysis of data from various operational systems such as manufacturing processes, supply chain management, customer interactions, and financial transactions. Operational analytics leverages advanced analytics techniques like predictive analytics, machine learning, and data visualization to monitor key performance indicators (KPIs), detect anomalies, identify trends, and improve overall operational efficiency and effectiveness. Organizations utilize operational analytics to enhance decision-making processes, reduce costs, improve quality, and ultimately drive competitive advantage in their respective industries.

Operational Analytics Market Trend Analysis

Integration of AI and Machine Learning in Operational Analytics

  • The integration of AI and machine learning in operational analytics represents a transformative shift in how businesses harness data to drive strategic decision-making. These technologies enable predictive analytics by analyzing historical data patterns to forecast future trends and behaviors. In manufacturing, for instance, AI-powered predictive maintenance algorithms can detect equipment failures before they occur, minimizing downtime and optimizing production schedules. This proactive approach not only reduces maintenance costs but also enhances overall operational efficiency.
  • In healthcare, AI-driven predictive analytics can analyze patient data to identify individuals at high risk of developing certain conditions, enabling healthcare providers to intervene early and improve patient outcomes. Moreover, AI enhances personalized medicine by tailoring treatment plans based on individual patient profiles and predictive insights derived from vast amounts of data.
  • In retail, machine learning algorithms analyze customer purchasing patterns and behaviors to predict demand trends, optimize inventory management, and personalize marketing campaigns. By understanding customer preferences in real-time, retailers can offer targeted promotions and improve customer engagement, ultimately driving sales and loyalty.
  • Overall, the integration of AI and machine learning in operational analytics not only empowers businesses to anticipate operational issues but also enables them to innovate new products and services based on data-driven insights. As these technologies continue to evolve, their ability to deliver actionable intelligence in real-time will be crucial in shaping competitive advantages across various industries globally.

The Impact of Cloud-Based Deployment Models on Operational Analytics

  • Cloud-based deployment models have revolutionized the operational analytics landscape by providing businesses with unprecedented scalability, flexibility, and cost-effectiveness. Unlike traditional on-premises solutions that require significant upfront investment in hardware and infrastructure maintenance, cloud-based operational analytics offer a pay-as-you-go model. This scalability allows organizations to dynamically adjust their computing resources based on demand, ensuring they can efficiently handle large volumes of data during peak periods without overprovisioning or underutilizing resources during quieter times.
  • Flexibility is another key advantage of cloud-based operational analytics. Businesses can choose from a variety of analytics tools and platforms offered by cloud providers, tailoring their solutions to meet specific operational needs and industry requirements. Moreover, cloud environments facilitate seamless integration with existing IT ecosystems, enabling organizations to leverage their data from multiple sources for comprehensive analytics insights.
  • Cost-effectiveness is significantly enhanced through cloud-based deployment models. By eliminating the need for extensive on-premises hardware investments and reducing IT overhead costs associated with maintenance and upgrades, businesses can allocate resources more efficiently towards innovation and strategic initiatives. Furthermore, cloud-based solutions typically offer predictable pricing structures and lower total cost of ownership over time, making advanced analytics capabilities accessible to organizations of all sizes, from startups to large enterprises.
  • Accelerating time-to-insight is a critical benefit of cloud-based operational analytics. By leveraging the computing power and storage capabilities of cloud platforms, businesses can rapidly process and analyze vast amounts of data in real-time or near-real-time. This agility enables faster decision-making, proactive problem-solving, and the ability to capitalize on emerging opportunities swiftly, thereby gaining a competitive edge in dynamic markets.

Operational Analytics Market Segment Analysis:

Operational Analytics Market Segmented based on By Type, By Business Function, By Application,By Deployment Model and By Industry Vertical

By Type, Software segment is expected to dominate the market during the forecast period

  • Software solutions have established dominance in the analytics market primarily due to their inherent advantages in scalability and customization. Unlike traditional hardware-based systems, software solutions can adapt to varying data volumes and complexities, making them ideal for organizations scaling their analytics capabilities. The ability to customize software according to specific business needs allows companies to tailor analytics tools to their unique requirements, whether for predictive modeling, business intelligence dashboards, or complex data mining tasks. This flexibility not only enhances operational efficiency but also supports strategic decision-making by providing real-time insights into market trends, customer behavior, and operational performance.
  • Moreover, software solutions excel in integration capabilities, seamlessly connecting with existing IT infrastructure and applications across different business functions. This integration ensures that analytics insights are readily accessible to relevant departments, from marketing and sales to finance and operations. Modern software platforms often feature user-friendly interfaces and intuitive visualization tools, democratizing data access within organizations. This accessibility empowers non-technical users to explore data, generate reports, and derive actionable insights independently, fostering a data-driven culture throughout the enterprise. As businesses increasingly prioritize agility and data-driven decision-making, software solutions continue to evolve, incorporating advanced analytics techniques like machine learning and artificial intelligence to deliver deeper, more accurate insights that drive competitive advantage.

By Deployment Model, On-Premises segment held the largest share in 2023

  • On-Premises solutions have historically been favored by organizations across various industries, primarily due to their robust security measures, regulatory compliance adherence, and the assurance of direct control over sensitive data. Security concerns remain paramount for many businesses, especially those handling confidential information or operating in highly regulated sectors such as finance, healthcare, and government. On-Premises solutions provide a level of data security that is perceived as higher compared to cloud-based alternatives, as they allow organizations to manage and safeguard their data within their own physical or virtual infrastructure. This control over data access and storage locations ensures compliance with stringent data protection regulations, offering peace of mind to enterprises wary of outsourcing data management to third-party cloud providers.
  • Regulatory compliance requirements further drive the preference for On-Premises solutions. Industries like healthcare and finance must adhere to strict regulations such as HIPAA and PCI-DSS, which mandate stringent data handling practices and security measures. On-Premises solutions enable organizations to implement customized security protocols and encryption standards tailored to meet regulatory mandates, thereby minimizing the risk of non-compliance penalties and data breaches. Additionally, certain operational requirements, such as the need for low-latency data processing or offline accessibility in remote locations, make On-Premises deployments more suitable for specific use cases where immediate access to data and applications is critical. Despite the growing popularity of cloud-based solutions for their scalability and cost-efficiency, On-Premises deployments continue to maintain a significant presence in industries where data security, regulatory compliance, and operational control are paramount considerations.

Operational Analytics Market Regional Insights:

Asia Pacific is Expected to Dominate the Market Over the Forecast period

  • Asia Pacific is increasingly becoming a hotspot for operational analytics, driven by several key factors. Countries like China, India, and Japan are at the forefront of digital transformation, with robust investments in cloud computing and big data infrastructure. These investments are not only enhancing data storage and processing capabilities but also enabling businesses to leverage advanced analytics tools to extract meaningful insights from their operational data.
  • In China, for instance, the rapid growth of e-commerce giants like Alibaba and JD.com has spurred the adoption of operational analytics to manage large-scale logistics operations and optimize supply chain efficiency. Big data analytics are used to track consumer behavior, predict market trends, and streamline delivery processes, ensuring timely and efficient service.
  • India's burgeoning telecommunications sector is another significant driver of operational analytics adoption. With the proliferation of mobile devices and increasing internet penetration, telecom companies are leveraging analytics to improve network performance, enhance customer service, and manage operational costs effectively. Real-time data analytics enable these companies to proactively address network issues and optimize bandwidth allocation based on user demand patterns.
  • Meanwhile, Japan's healthcare industry is adopting operational analytics to improve patient care outcomes and operational efficiency in hospitals and healthcare facilities. Analytics-driven insights help healthcare providers optimize resource allocation, reduce wait times, and personalize patient treatment plans based on predictive analytics models.
  • Overall, the Asia Pacific region's embrace of operational analytics is transforming industries by enabling data-driven decision-making, enhancing operational efficiency, and meeting the growing expectations of consumers in a digitally connected world. As investment in digital infrastructure continues to grow, the region is poised to remain a pivotal force in the global operational analytics market.

Active Key Players in the Operational Analytics Market

  • IBM Corporation (U.S.),
  • Oracle (U.S.),
  • Microsoft (U.S.),
  • SAP SE (Germany),
  • Hexagon AB (Sweden),
  • IMS Software, Inc. (U.S.),
  • Autodesk Inc. (U.S.),
  • Bentley Systems, Incorporated (U.S.),
  • Alteryx, Inc. (U.S.),
  • SAS Institute Inc. (U.S.),
  • Hewlett Packard Enterprise Development LP (U.S.),
  • Cisco Systems, Inc. (U.S.),
  • VMware, Inc. (U.S.),
  • Continuity Software Ltd. (Israel),
  • ExtraHop Networks, Inc. (U.S.),
  • BMC Software, Inc. (U.S.),
  • Apptio, Inc. (U.S.),
  • Appnomic (U.S.),
  • Evolven Software (U.S.),
  • Splunk Inc. (U.S.) and Other Key Players

Key Industry Developments in the Operational Analytics Market:

  • In June 2023, Jaguar Land Rover (JLR) announced a collaboration with Everstream Analytics, a supply chain solutions provider. This partnership integrates AI into JLR’s supply chain management, enabling real-time monitoring and mitigating supply-related issues
  • In March 2023, Insight Software, a leading technology company specializing in reporting, analytics, and performance management solutions, announced the expansion of its Angles Professional product line for Oracle. By integrating Logi Analytics, the company enhanced its offerings to create a tool beneficial for all business departments
  • In February 2023, IBM launched its new Watson AIOps platform, leveraging AI and machine learning to automate IT operations and enhance decision-making processes

Operational Analytics Market

Base Year:

2023

Forecast Period:

2024-2032

Historical Data:

2017 to 2023

Market Size in 2024:

USD 9.71 Bn.

Forecast Period 2024-32 CAGR:

14.06%

Market Size in 2032:

USD 31.71 Bn.

Segments Covered:

By Type

  • Software
  • Service

By Business Function

  • Information Technology
  • Marketing
  • Sales
  • Finance
  • Human Resources
  • Others

By Application

  • Predictive Asset Maintenance
  • Risk Management
  • Fraud Detection
  • Supply Chain Management
  • Customer Management
  • Workforce Management
  • Sales and Marketing Management
  • Others

By Deployment Model

  • On-Premises
  • Hosted/ On-Cloud

By Industry Vertical

  • Telecommunication
  • Retail and Consumer Goods
  • Manufacturing
  • Government and Defense
  • Energy and Utilities
  • Transportation and Logistics
  • Others

By Region

  • North America (U.S., Canada, Mexico)
  • Eastern Europe (Bulgaria, The Czech Republic, Hungary, Poland, Romania, Rest of Eastern Europe)
  • Western Europe (Germany, UK, France, Netherlands, Italy, Russia, Spain, Rest of Western Europe)
  • Asia Pacific (China, India, Japan, South Korea, Malaysia, Thailand, Vietnam, The Philippines, Australia, New-Zealand, Rest of APAC)
  • Middle East & Africa (Turkey, Bahrain, Kuwait, Saudi Arabia, Qatar, UAE, Israel, South Africa)
  • South America (Brazil, Argentina, Rest of SA)

Key Market Drivers:

  • Increasing Data Generation

Key Market Restraints:

  • Data Security Concerns

Key Opportunities:

  • Predictive Analytics

Companies Covered in the report:

  • IBM Corporation (U.S.), Oracle (U.S.), Microsoft (U.S.), SAP SE (Germany), Hexagon AB (Sweden), IMS Software, Inc. (U.S.), Autodesk Inc. (U.S.), Bentley Systems, Incorporated (U.S.), Alteryx, Inc. (U.S.), SAS Institute Inc. (U.S.), Hewlett Packard Enterprise Development LP (U.S.), Cisco Systems, Inc. (U.S.), VMware, Inc. (U.S.), Continuity Software Ltd. (Israel), ExtraHop Networks, Inc. (U.S.), BMC Software, Inc. (U.S.), Apptio, Inc. (U.S.), Appnomic (U.S.), Evolven Software (U.S.), Splunk Inc. (U.S.) and Other Major Players.

Chapter 1: Introduction
 1.1 Scope and Coverage

Chapter 2:Executive Summary

Chapter 3: Market Landscape
 3.1 Market Dynamics
  3.1.1 Drivers
  3.1.2 Restraints
  3.1.3 Opportunities
  3.1.4 Challenges
 3.2 Market Trend Analysis
 3.3 PESTLE Analysis
 3.4 Porter's Five Forces Analysis
 3.5 Industry Value Chain Analysis
 3.6 Ecosystem
 3.7 Regulatory Landscape
 3.8 Price Trend Analysis
 3.9 Patent Analysis
 3.10 Technology Evolution
 3.11 Investment Pockets
 3.12 Import-Export Analysis

Chapter 4: Operational Analytics Market by Type
 4.1 Operational Analytics Market Snapshot and Growth Engine
 4.2 Operational Analytics Market Overview
 4.3 Software
  4.3.1 Introduction and Market Overview
  4.3.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  4.3.3 Key Market Trends, Growth Factors and Opportunities
  4.3.4 Software: Geographic Segmentation Analysis
 4.4 Service
  4.4.1 Introduction and Market Overview
  4.4.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  4.4.3 Key Market Trends, Growth Factors and Opportunities
  4.4.4 Service: Geographic Segmentation Analysis

Chapter 5: Operational Analytics Market by Business Function
 5.1 Operational Analytics Market Snapshot and Growth Engine
 5.2 Operational Analytics Market Overview
 5.3 Information Technology
  5.3.1 Introduction and Market Overview
  5.3.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  5.3.3 Key Market Trends, Growth Factors and Opportunities
  5.3.4 Information Technology: Geographic Segmentation Analysis
 5.4 Marketing
  5.4.1 Introduction and Market Overview
  5.4.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  5.4.3 Key Market Trends, Growth Factors and Opportunities
  5.4.4 Marketing: Geographic Segmentation Analysis
 5.5 Sales
  5.5.1 Introduction and Market Overview
  5.5.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  5.5.3 Key Market Trends, Growth Factors and Opportunities
  5.5.4 Sales: Geographic Segmentation Analysis
 5.6 Finance
  5.6.1 Introduction and Market Overview
  5.6.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  5.6.3 Key Market Trends, Growth Factors and Opportunities
  5.6.4 Finance: Geographic Segmentation Analysis
 5.7 Human Resources
  5.7.1 Introduction and Market Overview
  5.7.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  5.7.3 Key Market Trends, Growth Factors and Opportunities
  5.7.4 Human Resources: Geographic Segmentation Analysis
 5.8 Others
  5.8.1 Introduction and Market Overview
  5.8.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  5.8.3 Key Market Trends, Growth Factors and Opportunities
  5.8.4 Others: Geographic Segmentation Analysis

Chapter 6: Operational Analytics Market by Application
 6.1 Operational Analytics Market Snapshot and Growth Engine
 6.2 Operational Analytics Market Overview
 6.3 Predictive Asset Maintenance
  6.3.1 Introduction and Market Overview
  6.3.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.3.3 Key Market Trends, Growth Factors and Opportunities
  6.3.4 Predictive Asset Maintenance: Geographic Segmentation Analysis
 6.4 Risk Management
  6.4.1 Introduction and Market Overview
  6.4.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.4.3 Key Market Trends, Growth Factors and Opportunities
  6.4.4 Risk Management: Geographic Segmentation Analysis
 6.5 Fraud Detection
  6.5.1 Introduction and Market Overview
  6.5.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.5.3 Key Market Trends, Growth Factors and Opportunities
  6.5.4 Fraud Detection: Geographic Segmentation Analysis
 6.6 Supply Chain Management
  6.6.1 Introduction and Market Overview
  6.6.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.6.3 Key Market Trends, Growth Factors and Opportunities
  6.6.4 Supply Chain Management: Geographic Segmentation Analysis
 6.7 Customer Management
  6.7.1 Introduction and Market Overview
  6.7.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.7.3 Key Market Trends, Growth Factors and Opportunities
  6.7.4 Customer Management: Geographic Segmentation Analysis
 6.8 Workforce Management
  6.8.1 Introduction and Market Overview
  6.8.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.8.3 Key Market Trends, Growth Factors and Opportunities
  6.8.4 Workforce Management: Geographic Segmentation Analysis
 6.9 Sales
  6.9.1 Introduction and Market Overview
  6.9.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.9.3 Key Market Trends, Growth Factors and Opportunities
  6.9.4 Sales: Geographic Segmentation Analysis
 6.10 Marketing Management
  6.10.1 Introduction and Market Overview
  6.10.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.10.3 Key Market Trends, Growth Factors and Opportunities
  6.10.4 Marketing Management: Geographic Segmentation Analysis
 6.11 Others
  6.11.1 Introduction and Market Overview
  6.11.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  6.11.3 Key Market Trends, Growth Factors and Opportunities
  6.11.4 Others: Geographic Segmentation Analysis

Chapter 7: Operational Analytics Market by Deployment Model
 7.1 Operational Analytics Market Snapshot and Growth Engine
 7.2 Operational Analytics Market Overview
 7.3 On-Premises and Hosted/ On-Cloud
  7.3.1 Introduction and Market Overview
  7.3.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  7.3.3 Key Market Trends, Growth Factors and Opportunities
  7.3.4 On-Premises and Hosted/ On-Cloud: Geographic Segmentation Analysis

Chapter 8: Operational Analytics Market by Industry Vertical
 8.1 Operational Analytics Market Snapshot and Growth Engine
 8.2 Operational Analytics Market Overview
 8.3 Telecommunication
  8.3.1 Introduction and Market Overview
  8.3.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  8.3.3 Key Market Trends, Growth Factors and Opportunities
  8.3.4 Telecommunication: Geographic Segmentation Analysis
 8.4 Retail and Consumer Goods
  8.4.1 Introduction and Market Overview
  8.4.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  8.4.3 Key Market Trends, Growth Factors and Opportunities
  8.4.4 Retail and Consumer Goods: Geographic Segmentation Analysis
 8.5 Manufacturing
  8.5.1 Introduction and Market Overview
  8.5.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  8.5.3 Key Market Trends, Growth Factors and Opportunities
  8.5.4 Manufacturing: Geographic Segmentation Analysis
 8.6 Government & Defense
  8.6.1 Introduction and Market Overview
  8.6.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  8.6.3 Key Market Trends, Growth Factors and Opportunities
  8.6.4 Government & Defense: Geographic Segmentation Analysis
 8.7 Energy & Utilities
  8.7.1 Introduction and Market Overview
  8.7.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  8.7.3 Key Market Trends, Growth Factors and Opportunities
  8.7.4 Energy & Utilities: Geographic Segmentation Analysis
 8.8 Transportation & Logistics
  8.8.1 Introduction and Market Overview
  8.8.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  8.8.3 Key Market Trends, Growth Factors and Opportunities
  8.8.4 Transportation & Logistics: Geographic Segmentation Analysis
 8.9 Others
  8.9.1 Introduction and Market Overview
  8.9.2 Historic and Forecasted Market Size in Value USD and Volume Units (2017-2032F)
  8.9.3 Key Market Trends, Growth Factors and Opportunities
  8.9.4 Others: Geographic Segmentation Analysis

Chapter 9: Company Profiles and Competitive Analysis
 9.1 Competitive Landscape
  9.1.1 Competitive Benchmarking
  9.1.2 Operational Analytics Market Share by Manufacturer (2023)
  9.1.3 Industry BCG Matrix
  9.1.4 Heat Map Analysis
  9.1.5 Mergers and Acquisitions

 9.2 IBM CORPORATION (U.S.)
  9.2.1 Company Overview
  9.2.2 Key Executives
  9.2.3 Company Snapshot
  9.2.4 Role of the Company in the Market
  9.2.5 Sustainability and Social Responsibility
  9.2.6 Operating Business Segments
  9.2.7 Product Portfolio
  9.2.8 Business Performance
  9.2.9 Key Strategic Moves and Recent Developments
  9.2.10 SWOT Analysis
 9.3 ORACLE (U.S.)
 9.4 MICROSOFT (U.S.)
 9.5 SAP SE (GERMANY)
 9.6 HEXAGON AB (SWEDEN)
 9.7 IMS SOFTWARE
 9.8 INC. (U.S.)
 9.9 AUTODESK INC. (U.S.)
 9.10 BENTLEY SYSTEMS
 9.11 INCORPORATED (U.S.)
 9.12 ALTERYX
 9.13 INC. (U.S.)
 9.14 SAS INSTITUTE INC. (U.S.)
 9.15 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP (U.S.)
 9.16 CISCO SYSTEMS
 9.17 INC. (U.S.)
 9.18 VMWARE
 9.19 INC. (U.S.)
 9.20 CONTINUITY SOFTWARE LTD. (ISRAEL)
 9.21 EXTRAHOP NETWORKS
 9.22 INC. (U.S.)
 9.23 BMC SOFTWARE
 9.24 INC. (U.S.)
 9.25 APPTIO
 9.26 INC. (U.S.)
 9.27 APPNOMIC (U.S.)
 9.28 EVOLVEN SOFTWARE (U.S.)
 9.29 SPLUNK INC. (U.S.)
 9.30 OTHER KEY PLAYERS.

Chapter 10: Global Operational Analytics Market By Region
 10.1 Overview
 10.2 . North America Operational Analytics Market
  10.2.1 Key Market Trends, Growth Factors and Opportunities
  10.2.2 Top Key Companies
  10.2.3 Historic and Forecasted Market Size by Segments
  10.2.4 Historic and Forecasted Market Size By Type
   10.2.4.1 Software
   10.2.4.2 Service
  10.2.5 Historic and Forecasted Market Size By Business Function
   10.2.5.1 Information Technology
   10.2.5.2 Marketing
   10.2.5.3 Sales
   10.2.5.4 Finance
   10.2.5.5 Human Resources
   10.2.5.6 Others
  10.2.6 Historic and Forecasted Market Size By Application
   10.2.6.1 Predictive Asset Maintenance
   10.2.6.2 Risk Management
   10.2.6.3 Fraud Detection
   10.2.6.4 Supply Chain Management
   10.2.6.5 Customer Management
   10.2.6.6 Workforce Management
   10.2.6.7 Sales
   10.2.6.8 Marketing Management
   10.2.6.9 Others
  10.2.7 Historic and Forecasted Market Size By Deployment Model
   10.2.7.1 On-Premises and Hosted/ On-Cloud
  10.2.8 Historic and Forecasted Market Size By Industry Vertical
   10.2.8.1 Telecommunication
   10.2.8.2 Retail and Consumer Goods
   10.2.8.3 Manufacturing
   10.2.8.4 Government & Defense
   10.2.8.5 Energy & Utilities
   10.2.8.6 Transportation & Logistics
   10.2.8.7 Others
  10.2.9 Historic and Forecast Market Size by Country
   10.2.9.1 US
   10.2.9.2 Canada
   10.2.9.3 Mexico
 10.3 . Eastern Europe Operational Analytics Market
  10.3.1 Key Market Trends, Growth Factors and Opportunities
  10.3.2 Top Key Companies
  10.3.3 Historic and Forecasted Market Size by Segments
  10.3.4 Historic and Forecasted Market Size By Type
   10.3.4.1 Software
   10.3.4.2 Service
  10.3.5 Historic and Forecasted Market Size By Business Function
   10.3.5.1 Information Technology
   10.3.5.2 Marketing
   10.3.5.3 Sales
   10.3.5.4 Finance
   10.3.5.5 Human Resources
   10.3.5.6 Others
  10.3.6 Historic and Forecasted Market Size By Application
   10.3.6.1 Predictive Asset Maintenance
   10.3.6.2 Risk Management
   10.3.6.3 Fraud Detection
   10.3.6.4 Supply Chain Management
   10.3.6.5 Customer Management
   10.3.6.6 Workforce Management
   10.3.6.7 Sales
   10.3.6.8 Marketing Management
   10.3.6.9 Others
  10.3.7 Historic and Forecasted Market Size By Deployment Model
   10.3.7.1 On-Premises and Hosted/ On-Cloud
  10.3.8 Historic and Forecasted Market Size By Industry Vertical
   10.3.8.1 Telecommunication
   10.3.8.2 Retail and Consumer Goods
   10.3.8.3 Manufacturing
   10.3.8.4 Government & Defense
   10.3.8.5 Energy & Utilities
   10.3.8.6 Transportation & Logistics
   10.3.8.7 Others
  10.3.9 Historic and Forecast Market Size by Country
   10.3.9.1 Bulgaria
   10.3.9.2 The Czech Republic
   10.3.9.3 Hungary
   10.3.9.4 Poland
   10.3.9.5 Romania
   10.3.9.6 Rest of Eastern Europe
 10.4 . Western Europe Operational Analytics Market
  10.4.1 Key Market Trends, Growth Factors and Opportunities
  10.4.2 Top Key Companies
  10.4.3 Historic and Forecasted Market Size by Segments
  10.4.4 Historic and Forecasted Market Size By Type
   10.4.4.1 Software
   10.4.4.2 Service
  10.4.5 Historic and Forecasted Market Size By Business Function
   10.4.5.1 Information Technology
   10.4.5.2 Marketing
   10.4.5.3 Sales
   10.4.5.4 Finance
   10.4.5.5 Human Resources
   10.4.5.6 Others
  10.4.6 Historic and Forecasted Market Size By Application
   10.4.6.1 Predictive Asset Maintenance
   10.4.6.2 Risk Management
   10.4.6.3 Fraud Detection
   10.4.6.4 Supply Chain Management
   10.4.6.5 Customer Management
   10.4.6.6 Workforce Management
   10.4.6.7 Sales
   10.4.6.8 Marketing Management
   10.4.6.9 Others
  10.4.7 Historic and Forecasted Market Size By Deployment Model
   10.4.7.1 On-Premises and Hosted/ On-Cloud
  10.4.8 Historic and Forecasted Market Size By Industry Vertical
   10.4.8.1 Telecommunication
   10.4.8.2 Retail and Consumer Goods
   10.4.8.3 Manufacturing
   10.4.8.4 Government & Defense
   10.4.8.5 Energy & Utilities
   10.4.8.6 Transportation & Logistics
   10.4.8.7 Others
  10.4.9 Historic and Forecast Market Size by Country
   10.4.9.1 Germany
   10.4.9.2 UK
   10.4.9.3 France
   10.4.9.4 Netherlands
   10.4.9.5 Italy
   10.4.9.6 Russia
   10.4.9.7 Spain
   10.4.9.8 Rest of Western Europe
 10.5 . Asia Pacific Operational Analytics Market
  10.5.1 Key Market Trends, Growth Factors and Opportunities
  10.5.2 Top Key Companies
  10.5.3 Historic and Forecasted Market Size by Segments
  10.5.4 Historic and Forecasted Market Size By Type
   10.5.4.1 Software
   10.5.4.2 Service
  10.5.5 Historic and Forecasted Market Size By Business Function
   10.5.5.1 Information Technology
   10.5.5.2 Marketing
   10.5.5.3 Sales
   10.5.5.4 Finance
   10.5.5.5 Human Resources
   10.5.5.6 Others
  10.5.6 Historic and Forecasted Market Size By Application
   10.5.6.1 Predictive Asset Maintenance
   10.5.6.2 Risk Management
   10.5.6.3 Fraud Detection
   10.5.6.4 Supply Chain Management
   10.5.6.5 Customer Management
   10.5.6.6 Workforce Management
   10.5.6.7 Sales
   10.5.6.8 Marketing Management
   10.5.6.9 Others
  10.5.7 Historic and Forecasted Market Size By Deployment Model
   10.5.7.1 On-Premises and Hosted/ On-Cloud
  10.5.8 Historic and Forecasted Market Size By Industry Vertical
   10.5.8.1 Telecommunication
   10.5.8.2 Retail and Consumer Goods
   10.5.8.3 Manufacturing
   10.5.8.4 Government & Defense
   10.5.8.5 Energy & Utilities
   10.5.8.6 Transportation & Logistics
   10.5.8.7 Others
  10.5.9 Historic and Forecast Market Size by Country
   10.5.9.1 China
   10.5.9.2 India
   10.5.9.3 Japan
   10.5.9.4 South Korea
   10.5.9.5 Malaysia
   10.5.9.6 Thailand
   10.5.9.7 Vietnam
   10.5.9.8 The Philippines
   10.5.9.9 Australia
   10.5.9.10 New Zealand
   10.5.9.11 Rest of APAC
 10.6 . Middle East & Africa Operational Analytics Market
  10.6.1 Key Market Trends, Growth Factors and Opportunities
  10.6.2 Top Key Companies
  10.6.3 Historic and Forecasted Market Size by Segments
  10.6.4 Historic and Forecasted Market Size By Type
   10.6.4.1 Software
   10.6.4.2 Service
  10.6.5 Historic and Forecasted Market Size By Business Function
   10.6.5.1 Information Technology
   10.6.5.2 Marketing
   10.6.5.3 Sales
   10.6.5.4 Finance
   10.6.5.5 Human Resources
   10.6.5.6 Others
  10.6.6 Historic and Forecasted Market Size By Application
   10.6.6.1 Predictive Asset Maintenance
   10.6.6.2 Risk Management
   10.6.6.3 Fraud Detection
   10.6.6.4 Supply Chain Management
   10.6.6.5 Customer Management
   10.6.6.6 Workforce Management
   10.6.6.7 Sales
   10.6.6.8 Marketing Management
   10.6.6.9 Others
  10.6.7 Historic and Forecasted Market Size By Deployment Model
   10.6.7.1 On-Premises and Hosted/ On-Cloud
  10.6.8 Historic and Forecasted Market Size By Industry Vertical
   10.6.8.1 Telecommunication
   10.6.8.2 Retail and Consumer Goods
   10.6.8.3 Manufacturing
   10.6.8.4 Government & Defense
   10.6.8.5 Energy & Utilities
   10.6.8.6 Transportation & Logistics
   10.6.8.7 Others
  10.6.9 Historic and Forecast Market Size by Country
   10.6.9.1 Turkey
   10.6.9.2 Bahrain
   10.6.9.3 Kuwait
   10.6.9.4 Saudi Arabia
   10.6.9.5 Qatar
   10.6.9.6 UAE
   10.6.9.7 Israel
   10.6.9.8 South Africa
 10.7 . South America Operational Analytics Market
  10.7.1 Key Market Trends, Growth Factors and Opportunities
  10.7.2 Top Key Companies
  10.7.3 Historic and Forecasted Market Size by Segments
  10.7.4 Historic and Forecasted Market Size By Type
   10.7.4.1 Software
   10.7.4.2 Service
  10.7.5 Historic and Forecasted Market Size By Business Function
   10.7.5.1 Information Technology
   10.7.5.2 Marketing
   10.7.5.3 Sales
   10.7.5.4 Finance
   10.7.5.5 Human Resources
   10.7.5.6 Others
  10.7.6 Historic and Forecasted Market Size By Application
   10.7.6.1 Predictive Asset Maintenance
   10.7.6.2 Risk Management
   10.7.6.3 Fraud Detection
   10.7.6.4 Supply Chain Management
   10.7.6.5 Customer Management
   10.7.6.6 Workforce Management
   10.7.6.7 Sales
   10.7.6.8 Marketing Management
   10.7.6.9 Others
  10.7.7 Historic and Forecasted Market Size By Deployment Model
   10.7.7.1 On-Premises and Hosted/ On-Cloud
  10.7.8 Historic and Forecasted Market Size By Industry Vertical
   10.7.8.1 Telecommunication
   10.7.8.2 Retail and Consumer Goods
   10.7.8.3 Manufacturing
   10.7.8.4 Government & Defense
   10.7.8.5 Energy & Utilities
   10.7.8.6 Transportation & Logistics
   10.7.8.7 Others
  10.7.9 Historic and Forecast Market Size by Country
   10.7.9.1 Brazil
   10.7.9.2 Argentina
   10.7.9.3 Rest of SA

Chapter 11 Analyst Viewpoint and Conclusion
 11.1 Recommendations and Concluding Analysis
 11.2 Potential Market Strategies

Chapter 12 Research Methodology
 12.1 Research Process
 12.2 Primary Research
 12.3 Secondary Research
 

Operational Analytics Market

Base Year:

2023

Forecast Period:

2024-2032

Historical Data:

2017 to 2023

Market Size in 2024:

USD 9.71 Bn.

Forecast Period 2024-32 CAGR:

14.06%

Market Size in 2032:

USD 31.71 Bn.

Segments Covered:

By Type

  • Software
  • Service

By Business Function

  • Information Technology
  • Marketing
  • Sales
  • Finance
  • Human Resources
  • Others

By Application

  • Predictive Asset Maintenance
  • Risk Management
  • Fraud Detection
  • Supply Chain Management
  • Customer Management
  • Workforce Management
  • Sales and Marketing Management
  • Others

By Deployment Model

  • On-Premises
  • Hosted/ On-Cloud

By Industry Vertical

  • Telecommunication
  • Retail and Consumer Goods
  • Manufacturing
  • Government and Defense
  • Energy and Utilities
  • Transportation and Logistics
  • Others

By Region

  • North America (U.S., Canada, Mexico)
  • Eastern Europe (Bulgaria, The Czech Republic, Hungary, Poland, Romania, Rest of Eastern Europe)
  • Western Europe (Germany, UK, France, Netherlands, Italy, Russia, Spain, Rest of Western Europe)
  • Asia Pacific (China, India, Japan, South Korea, Malaysia, Thailand, Vietnam, The Philippines, Australia, New-Zealand, Rest of APAC)
  • Middle East & Africa (Turkey, Bahrain, Kuwait, Saudi Arabia, Qatar, UAE, Israel, South Africa)
  • South America (Brazil, Argentina, Rest of SA)

Key Market Drivers:

  • Increasing Data Generation

Key Market Restraints:

  • Data Security Concerns

Key Opportunities:

  • Predictive Analytics

Companies Covered in the report:

  • IBM Corporation (U.S.), Oracle (U.S.), Microsoft (U.S.), SAP SE (Germany), Hexagon AB (Sweden), IMS Software, Inc. (U.S.), Autodesk Inc. (U.S.), Bentley Systems, Incorporated (U.S.), Alteryx, Inc. (U.S.), SAS Institute Inc. (U.S.), Hewlett Packard Enterprise Development LP (U.S.), Cisco Systems, Inc. (U.S.), VMware, Inc. (U.S.), Continuity Software Ltd. (Israel), ExtraHop Networks, Inc. (U.S.), BMC Software, Inc. (U.S.), Apptio, Inc. (U.S.), Appnomic (U.S.), Evolven Software (U.S.), Splunk Inc. (U.S.) and Other Major Players.

Frequently Asked Questions :

What would be the forecast period in the Operational Analytics Market research report?
Who are the key players in the Operational Analytics Market?
What are the segments of the Operational Analytics Market?
What is the Operational Analytics Market?
How big is the Operational Analytics Market?