Global Data Lake Market Overview
The Global Data Lake Market size is expected to grow from USD 7.87 billion in 2023 to USD 60.3 billion by 2032, at a CAGR of 25.39% during the forecast period (2024-2032)
A data lake is a storehouse of raw copies of source system data, sensor data, social data, and converted data that can be utilized for reporting, visualization, advanced analytics, and machine learning, among other things. A data lake is a system for storing, processing, and securing vast amounts of structured, semi-structured, and unstructured data in a concentrated location. It has no size limitations when it comes to storing and analyzing data in its native format. Enterprises and data teams may now evaluate new projects based on the ROI and cost of a single workload to see if they should be scaled up, due to advances in cloud computing.
One of the most significant advancements for businesses today is cloud computing's production readiness and security. This paradigm provides practically infinite options for firms' analytics lifecycles. The usage of IoT devices is expected to boost the market growth. The proliferation of data and the increasing usage of IoT are projected to drive market expansion. Various government initiatives, such as the development of smart cities and the usage of intelligent utility meters, will also benefit the industry. Singapore, Tokyo, New York, and London are likely to be among the top smart city investors by 2020, thus, driving the growth of the market in the forecast period.
Key Factors And Market Dynamics For Data Lake Market
Drivers:
Eliminates Data Silos
Most organizations' data is typically stored in multiple locations and various ways, with no centralized access management. It's difficult to gain access to it and do any kind of analysis. These data silos are broken down by data lakes, which enable seamless access to the data required for meaningful insights and faster innovation. A centralized data lake eliminates data silos, such as duplicate data, numerous security policies, and collaboration obstacles. The data has been consolidated, cataloged, and made available to downstream users in a single location. The growing demand for multiple access to large data pools within a few clicks is propelling the development of the data lake market over the projected period.
Stores Data in any Format
During data ingestion, data lakes eliminate the requirement for data modeling. Customers can store data in data lakes in any format and on any medium, including RDBMS, NoSQL Databases, File Systems, and Time Series Databases, among others. Data can be loaded in its original format, such as a log, CSV, XML, or parquet, without having to be transformed. Data lakes are less expensive than typical data warehouses because they allow organizations to store data in any format or structure they want. The data is not contaminated since it is stored in its original or raw format. Therefore, earlier analytics may always be fine-tuned and new insights can be developed using the same historical data. Data scientists can utilize more advanced analytics techniques or predictive modeling to get access to raw data when they need it thus, strengthening the development of the data lake market during the projected timeframe.
Restraints:
Reliability Issues
Data lakes can suffer from data reliability issues if the right tools aren't in place, making it difficult for data scientists and analysts to reason about the data. The inability to combine batch and streaming data, as well as data corruption and other causes, might create these problems. Furthermore, since data lakes include such large volumes of data, data scientists and data engineers are usually the only ones who can sort through them. In most cases, professional skills are required to extract data analysis from data lakes thus, hampering the growth of the data lake market.
Security Threats
Security hazards and access control problems can occur as a result of storing too much data in a data lake. Certain sensitive data could end up in a data lake without proper oversight and become accessible to anyone with access to the data lake. Furthermore, due to the lack of visibility and the ability to delete or update data, data lakes are difficult to secure and regulate. Due to these limitations, fulfilling regulatory requirements is extremely difficult, therefore, hindering the expansion of the data lake market in the projected timeframe.
Opportunities:
The growing market competitiveness has compelled business organizations to automate some of the manufacturing or operational process. The automation results in the production of data depending on the level of automation. According to Aberdeen's survey, organizations that employed data lake outperformed similar companies by 9% in organic revenue growth. Data lake enables organizations to run new forms of analytics such as machine learning over log files, social media, and IoT devices thus, enabling them to expand their reach, enhance customer retention by uncovering their preferences, make a meaningful business decision and ensure growth. Moreover, 80% of the data generated across the globe is unstructured, businesses have acknowledged the requirement of big data architecture for uncovering fresh opportunities, and boosting growth. The current scenario is propelling the adoption of data lakes and it will witness an upsurge as organizations will start reaping benefits from data lake implementations thus, creating opportunities for the market players.
Challenges:
Slow performance
Traditional query engines have historically been slower as the size of the data in a data lake gets bigger. Metadata management, inappropriate data partitioning, and other bottlenecks are among them. This problem develops primarily as a result of extensive data integration. The expanding BFSI sector, as well as IoT devices, has generated a need for huge storage. As the number of IoT devices grows, the amount of data collected by them grows exponentially, challenging to examine data with a few clicks.
Market Segmentation
Segmentation Analysis of Data Lake Market:
By Type, the solutions segment is forecasted to lead the growth of the data lake market over the projected timeframe. The growing IoT sector and the digitization of industries have resulted in the production of a large volume of data. This data can be integrated and managed properly with the help of data lake solutions. The usage of AI in data lake offers advanced analytics and data visualization thus, boosting the growth of the segment.
By Deployment, the cloud segment is expected to have the highest share of the data lake market over the forecast. The cloud is well-suited for data lakes as it can store an unlimited amount of data of all types and from a variety of sources. The usage of a cloud-based data lake reduces hardware and software capital expenses. Cloud solutions make it possible to quickly bring new analytic solutions to market. It also eliminates data silos by combining different data types into a single, unified, and infinitely scalable platform. Customers can use cloud data lakes to run multiple workloads simultaneously, such as data loading, analytics, reporting, and data science thus, supporting the growth of the segment over the projected timeframe.
By Industry Vertical, the BFSI segment is anticipated to lead the growth of the data lake market in the period of forecast. The utilization of data lakes enables financial services companies to reach the next level in adopting advanced analytics, machine learning, and AI. For financial services firms, a data lake provides an integrated vision to deliver specific opportunities spanning from Customer 360 to fraud prevention to new revenue streams. Banks are hiring data engineers to create more responsive data lakes to meet customer demands, and they're also attempting to improve data utility for on-the-go solutions. State Bank of India (SBI) has supplied data lakes to bank executives, deputy managing directors, and chief information officers to provide on-the-go analytics in addition to the traditional data warehouse, resulting in the segment's rise.
Regional Analysis of Data Lake Market:
The North American region is anticipated to dominate the data lake market over the forecast period attributed to the growing IoT sector. Businesses have started adopting innovative solutions to ramp up production. The smart factories concept is expected to boost the development of IoT devices thus, it is set to revolutionize the manufacturing process and increase productivity substantially. Devices utilized in the production process will get integrated with the internet thereby, generating a tremendous amount of data. According to Capgemini, more than 60% of financial institutions in the United States believe that big data analytics provides a significant competitive advantage over competitors, and more than 90% believe that big data initiatives influence the odds of future success thus, driving the development of the market during the projected timeframe.
The European region is expected to have the second-highest share of the data lake market during the analysis period. There has been a rise in the installation of smart meters in residential, commercial, transportation, and industrial. Smart meters system is utilized in measuring power fed into or consumed from the grid and provides more information than traditional meters. These devices are capable of transmitting and receiving data for information, monitoring, and control purposes via electronic communication, and it provides several advantages to the energy system and its users. The EU commission stated that by 2024 it plans to install about 225 million smart meters for electricity and 51 million for gas. By 2024, it is expected that 77 percent of European consumers will have a smart meter for electricity and 44 percent will have a smart meter for gas. This huge number of smart meters will generate a large amount of data thus, strengthening the expansion of the data lake market in the projected timeframe.
The data lake market in the Asia-Pacific region is projected to develop at the highest CAGR during the forecast. Countries like India, China, Japan, Indonesia, Malaysia, and South Korea are the major contributors to the growth of the market. These developing economies are investing heavily in industrial automation to increase productivity as well as sustainability. Moreover, some of the countries have taken the initiative of the smart city. For instance, the Indian government plans to build 4,000 smart cities by the end of 2023, with a budget of US$ 6.5 billion. The Indian government expects that this program would offer individuals a decent standard of living as well as a clean and sustainable environment. Furthermore, China has actively invested in smart city initiatives, and its smart city program is on target to spend US$ 39 billion on smart cities by 2023, with over 500 smart cities in various stages of development. Smart cities when operational will generate a huge amount of data thus, supporting the growth of the data lake market.
Players Covered In Data Lake market are:
- Amazon Web Services Inc
- Cloudera Inc.
- Microsoft Corporation
- Dremio Corporation
- Oracle Corporation
- Teradata Corporation
- SAS Institute Inc.
- Snowflake Inc.
- Informatica Corporation
- Zaloni Inc. and other major players.
Recent Industry Development in Data Lake Market
- In May 2024, Cribl, the Data Engine for IT and Security, announced it had signed a global agreement with Microsoft, making it easier for customers to manage and analyze their IT and security data with Cribl’s innovative products in the Microsoft Azure ecosystem. This agreement underscores the commitment of Cribl and Microsoft to empower enterprises to transform their data management strategy with innovative products purpose-built for IT and Security.
- In May 2023, Amazon Web Services, Inc. announced the general availability of Amazon Security Lake, a service that automatically centralizes an organization’s security data from across their AWS environments, leading SaaS providers, on-premises environments, and cloud sources into a purpose-built data lake, customers can act on security data faster and simplify security data management across hybrid and multi-cloud environments.
Global Data Lake Market |
|||
Base Year: |
2023 |
Forecast Period: |
2024-2032 |
Historical Data: |
2017 to 2022 |
Market Size in 2023: |
USD 7.87 Bn. |
Forecast Period 2024-32 CAGR: |
25.39% |
Market Size in 2032: |
USD 60.3 Bn. |
Segments Covered: |
By Type |
|
|
By Deployment |
|
||
By Industry Vertical |
|
||
By Region |
|
||
Key Market Drivers: |
|
||
Key Market Restraints: |
|
||
Key Opportunities: |
|
||
Companies Covered in the report: |
|
Chapter 1: Introduction
1.1 Research Objectives
1.2 Research Methodology
1.3 Research Process
1.4 Scope and Coverage
1.4.1 Market Definition
1.4.2 Key Questions Answered
1.5 Market Segmentation
Chapter 2:Executive Summary
Chapter 3:Growth Opportunities By Segment
3.1 By Type
3.2 By Deployment
3.3 By Industry Vertical
Chapter 4: Market Landscape
4.1 Porter's Five Forces Analysis
4.1.1 Bargaining Power of Supplier
4.1.2 Threat of New Entrants
4.1.3 Threat of Substitutes
4.1.4 Competitive Rivalry
4.1.5 Bargaining Power Among Buyers
4.2 Industry Value Chain Analysis
4.3 Market Dynamics
4.3.1 Drivers
4.3.2 Restraints
4.3.3 Opportunities
4.5.4 Challenges
4.4 Pestle Analysis
4.5 Technological Roadmap
4.6 Regulatory Landscape
4.7 SWOT Analysis
4.8 Price Trend Analysis
4.9 Patent Analysis
4.10 Analysis of the Impact of Covid-19
4.10.1 Impact on the Overall Market
4.10.2 Impact on the Supply Chain
4.10.3 Impact on the Key Manufacturers
4.10.4 Impact on the Pricing
Chapter 5: Data Lake Market by Type
5.1 Data Lake Market Overview Snapshot and Growth Engine
5.2 Data Lake Market Overview
5.3 Solution
5.3.1 Introduction and Market Overview
5.3.2 Historic and Forecasted Market Size (2016-2028F)
5.3.3 Key Market Trends, Growth Factors and Opportunities
5.3.4 Solution: Grographic Segmentation
5.4 Services
5.4.1 Introduction and Market Overview
5.4.2 Historic and Forecasted Market Size (2016-2028F)
5.4.3 Key Market Trends, Growth Factors and Opportunities
5.4.4 Services: Grographic Segmentation
Chapter 6: Data Lake Market by Deployment
6.1 Data Lake Market Overview Snapshot and Growth Engine
6.2 Data Lake Market Overview
6.3 Cloud
6.3.1 Introduction and Market Overview
6.3.2 Historic and Forecasted Market Size (2016-2028F)
6.3.3 Key Market Trends, Growth Factors and Opportunities
6.3.4 Cloud: Grographic Segmentation
6.4 On-Premise
6.4.1 Introduction and Market Overview
6.4.2 Historic and Forecasted Market Size (2016-2028F)
6.4.3 Key Market Trends, Growth Factors and Opportunities
6.4.4 On-Premise: Grographic Segmentation
Chapter 7: Data Lake Market by Industry Vertical
7.1 Data Lake Market Overview Snapshot and Growth Engine
7.2 Data Lake Market Overview
7.3 BFSI
7.3.1 Introduction and Market Overview
7.3.2 Historic and Forecasted Market Size (2016-2028F)
7.3.3 Key Market Trends, Growth Factors and Opportunities
7.3.4 BFSI: Grographic Segmentation
7.4 Healthcare & Life Sciences
7.4.1 Introduction and Market Overview
7.4.2 Historic and Forecasted Market Size (2016-2028F)
7.4.3 Key Market Trends, Growth Factors and Opportunities
7.4.4 Healthcare & Life Sciences: Grographic Segmentation
7.5 Manufacturing
7.5.1 Introduction and Market Overview
7.5.2 Historic and Forecasted Market Size (2016-2028F)
7.5.3 Key Market Trends, Growth Factors and Opportunities
7.5.4 Manufacturing: Grographic Segmentation
Chapter 8: Company Profiles and Competitive Analysis
8.1 Competitive Landscape
8.1.1 Competitive Positioning
8.1.2 Data Lake Sales and Market Share By Players
8.1.3 Industry BCG Matrix
8.1.4 Ansoff Matrix
8.1.5 Data Lake Industry Concentration Ratio (CR5 and HHI)
8.1.6 Top 5 Data Lake Players Market Share
8.1.7 Mergers and Acquisitions
8.1.8 Business Strategies By Top Players
8.2 AMAZON WEB SERVICES INC.
8.2.1 Company Overview
8.2.2 Key Executives
8.2.3 Company Snapshot
8.2.4 Operating Business Segments
8.2.5 Product Portfolio
8.2.6 Business Performance
8.2.7 Key Strategic Moves and Recent Developments
8.2.8 SWOT Analysis
8.3 CLOUDERA INC.
8.4 MICROSOFT CORPORATION
8.5 DREMIO CORPORATION
8.6 ORACLE CORPORATION
8.7 TERADATA CORPORATION
8.8 SAS INSTITUTE INC.
8.9 SNOWFLAKE INC.
8.10 INFORMATICA CORPORATION
8.11 ZALONI INC.
8.12 OTHER MAJOR PLAYERS
Chapter 9: Global Data Lake Market Analysis, Insights and Forecast, 2016-2028
9.1 Market Overview
9.2 Historic and Forecasted Market Size By Type
9.2.1 Solution
9.2.2 Services
9.3 Historic and Forecasted Market Size By Deployment
9.3.1 Cloud
9.3.2 On-Premise
9.4 Historic and Forecasted Market Size By Industry Vertical
9.4.1 BFSI
9.4.2 Healthcare & Life Sciences
9.4.3 Manufacturing
Chapter 10: North America Data Lake Market Analysis, Insights and Forecast, 2016-2028
10.1 Key Market Trends, Growth Factors and Opportunities
10.2 Impact of Covid-19
10.3 Key Players
10.4 Key Market Trends, Growth Factors and Opportunities
10.4 Historic and Forecasted Market Size By Type
10.4.1 Solution
10.4.2 Services
10.5 Historic and Forecasted Market Size By Deployment
10.5.1 Cloud
10.5.2 On-Premise
10.6 Historic and Forecasted Market Size By Industry Vertical
10.6.1 BFSI
10.6.2 Healthcare & Life Sciences
10.6.3 Manufacturing
10.7 Historic and Forecast Market Size by Country
10.7.1 U.S.
10.7.2 Canada
10.7.3 Mexico
Chapter 11: Europe Data Lake Market Analysis, Insights and Forecast, 2016-2028
11.1 Key Market Trends, Growth Factors and Opportunities
11.2 Impact of Covid-19
11.3 Key Players
11.4 Key Market Trends, Growth Factors and Opportunities
11.4 Historic and Forecasted Market Size By Type
11.4.1 Solution
11.4.2 Services
11.5 Historic and Forecasted Market Size By Deployment
11.5.1 Cloud
11.5.2 On-Premise
11.6 Historic and Forecasted Market Size By Industry Vertical
11.6.1 BFSI
11.6.2 Healthcare & Life Sciences
11.6.3 Manufacturing
11.7 Historic and Forecast Market Size by Country
11.7.1 Germany
11.7.2 U.K.
11.7.3 France
11.7.4 Italy
11.7.5 Russia
11.7.6 Spain
11.7.7 Rest of Europe
Chapter 12: Asia-Pacific Data Lake Market Analysis, Insights and Forecast, 2016-2028
12.1 Key Market Trends, Growth Factors and Opportunities
12.2 Impact of Covid-19
12.3 Key Players
12.4 Key Market Trends, Growth Factors and Opportunities
12.4 Historic and Forecasted Market Size By Type
12.4.1 Solution
12.4.2 Services
12.5 Historic and Forecasted Market Size By Deployment
12.5.1 Cloud
12.5.2 On-Premise
12.6 Historic and Forecasted Market Size By Industry Vertical
12.6.1 BFSI
12.6.2 Healthcare & Life Sciences
12.6.3 Manufacturing
12.7 Historic and Forecast Market Size by Country
12.7.1 China
12.7.2 India
12.7.3 Japan
12.7.4 Singapore
12.7.5 Australia
12.7.6 New Zealand
12.7.7 Rest of APAC
Chapter 13: Middle East & Africa Data Lake Market Analysis, Insights and Forecast, 2016-2028
13.1 Key Market Trends, Growth Factors and Opportunities
13.2 Impact of Covid-19
13.3 Key Players
13.4 Key Market Trends, Growth Factors and Opportunities
13.4 Historic and Forecasted Market Size By Type
13.4.1 Solution
13.4.2 Services
13.5 Historic and Forecasted Market Size By Deployment
13.5.1 Cloud
13.5.2 On-Premise
13.6 Historic and Forecasted Market Size By Industry Vertical
13.6.1 BFSI
13.6.2 Healthcare & Life Sciences
13.6.3 Manufacturing
13.7 Historic and Forecast Market Size by Country
13.7.1 Turkey
13.7.2 Saudi Arabia
13.7.3 Iran
13.7.4 UAE
13.7.5 Africa
13.7.6 Rest of MEA
Chapter 14: South America Data Lake Market Analysis, Insights and Forecast, 2016-2028
14.1 Key Market Trends, Growth Factors and Opportunities
14.2 Impact of Covid-19
14.3 Key Players
14.4 Key Market Trends, Growth Factors and Opportunities
14.4 Historic and Forecasted Market Size By Type
14.4.1 Solution
14.4.2 Services
14.5 Historic and Forecasted Market Size By Deployment
14.5.1 Cloud
14.5.2 On-Premise
14.6 Historic and Forecasted Market Size By Industry Vertical
14.6.1 BFSI
14.6.2 Healthcare & Life Sciences
14.6.3 Manufacturing
14.7 Historic and Forecast Market Size by Country
14.7.1 Brazil
14.7.2 Argentina
14.7.3 Rest of SA
Chapter 15 Investment Analysis
Chapter 16 Analyst Viewpoint and Conclusion
Global Data Lake Market |
|||
Base Year: |
2023 |
Forecast Period: |
2024-2032 |
Historical Data: |
2017 to 2022 |
Market Size in 2023: |
USD 7.87 Bn. |
Forecast Period 2024-32 CAGR: |
25.39% |
Market Size in 2032: |
USD 60.3 Bn. |
Segments Covered: |
By Type |
|
|
By Deployment |
|
||
By Industry Vertical |
|
||
By Region |
|
||
Key Market Drivers: |
|
||
Key Market Restraints: |
|
||
Key Opportunities: |
|
||
Companies Covered in the report: |
|
Frequently Asked Questions :
The forecast period in the Data Lake Market research report is 2024-2032.
Amazon Web Services Inc, Cloudera Inc., Microsoft Corporation, Dremio Corporation, Oracle Corporation, Teradata Corporation, SAS Institute Inc., Snowflake Inc., Informatica Corporation, Zaloni Inc., and other major players.
The Data Lake Market is segmented into Type, Deployment, Industry Vertical, and region. By Type, the market is categorized into Solutions, Services. By Deployment, the market is categorized into Cloud, On-Premise. By Industry Vertical, the market is categorized into BFSI, Healthcare & Life Sciences, and Manufacturing. By region, it is analyzed across North America (U.S.; Canada; Mexico), Europe (Germany; U.K.; France; Italy; Russia; Spain, etc.), Asia-Pacific (China; India; Japan; Southeast Asia, etc.), South America (Brazil; Argentina, etc.), Middle East & Africa (Saudi Arabia; South Africa, etc.).
A data lake is a storehouse of raw copies of source system data, sensor data, social data, and converted data that can be utilized for reporting, visualization, advanced analytics, and machine learning, among other things. A data lake is a system for storing, processing, and securing vast amounts of structured, semi-structured, and unstructured data in a concentrated location.
The Global Data Lake Market size is expected to grow from USD 7.87 billion in 2023 to USD 60.3 billion by 2032, at a CAGR of 25.39% during the forecast period (2024-2032)