Global Predictive Maintenance Market Overview
Predictive Maintenance Market Size Was Valued at USD 7.13 Billion in 2023 and is Projected to Reach USD 47.27 Billion by 2032, Growing at a CAGR of 23.39% From 2024-2032
Predictive maintenance is a technology that applies for the data analysis tools and techniques to determine inconsistency in the operation and possible defects in equipment and processes so we can fix them before they fail. Preferably, predictive maintenance enables the maintenance frequency to be as low as possible to prevent unplanned reactive maintenance, without suffering costs related to doing too much-preventing maintenance. Furthermore, predictive maintenance uses historical and real-time data from different parts of the operation to expect problems before they happen. The major areas of the company that factor into predictive maintenance such as the real-time monitoring of asset condition and performance, the analysis of work order data, benchmarking MRO inventory usage. There is a various key component to predictive maintenance with technology and software being one of these critical pieces such as the artificial intelligence, Internet of Things (IoT), and integrated system allow for various assets and systems to connect, work together and analyze, share, and action data. These tools record information utilizing industrial controls, predictive maintenance sensors, and businesses systems (such as EAM software and ERP software). They then make sense of it and utilize it to identify any areas that require focus.
Moreover, for instance, using predictive maintenance and predictive maintenance sensors include vibration analysis, thermal imaging, oil analysis, and equipment observation which leads the growth of the market during the forecast period. Moreover, the importance of predictive maintenance such as if predictive maintenance is working successfully as a maintenance strategy, maintenance is only performed on machines when it is needed. Therefore, just before failure is probably to occur. This brings different cost savings, reducing the time the equipment is being maintained, decreasing the production hours lost to maintenance, overcome the cost of spare parts and supplies which helps to growth of the market in the course of the forecast period. Predictive maintenance programs have been shown to support the tenfold increase in ROI, a 25%-30% decrease in maintenance costs, a 70%-75% reduction of breakdowns, and a 35%-45% minimize in downtime. Some condition monitoring techniques are costly and need specialist and experienced personnel for data analysis to be effective.
Market Dynamics and Factors of Predictive Maintenance Market
Drivers:
Evaluating the aggressive time constraints for different industrial products and services, it is important to recognize the causes of failures or potential faults before they have a chance to occur. Developing technologies such as Internet of Things (IoT) cloud storage, and big data analytics are qualified more industrial equipment and assembly robots to provide condition-based data, making fault detection easier and practical. Information received from this equipment can be turned into actionable and meaningful insights by using these solutions. This is anticipated to stimulate the demand for these solutions over the globe.
Companies are deploying their maintenance services more effectively and are boosting equipment up-time by proactively determining potential issues by using the available data within the plant. The faults or failures of the equipment or plant can be determined easily by effectively using the available structural data. The structural data pointers include working hours, year of production, model, make, warranty details along with unstructured data mainly repair logs and maintenance history. This information allows organizations to predict if or when the equipment will fail so that the repair works can be carried out before the failure occurs.
Predictive maintenance can be applied to all industry verticals where machines create significant amounts of data and require maintenance. Industries such as healthcare, aerospace, manufacturing, automotive, and process industries such as chemicals, food, and beverage, oil, and gas can be transformed with the help of these solutions. In addition, apart from the advantages such as reducing downtime, removing the causes of failure, and managing repair costs, these solutions also employ non-intrusive testing techniques for evaluating and computing asset performance trends.
Restraints:
Insufficient accessibility of skilled workforce with suitable knowledge of operating the predictive maintenance solution is a major challenge experienced by the organizations. Trained workers are required to handle the new software systems to deploy AI-based IoT technologies and skillsets. Therefore, the existing workers are required to be trained on how to operate the latest and upgraded systems. Furthermore, industries are dynamic toward approving new technologies, however, they are experiencing a scarcity of highly skilled workforce and proficient workers.
Opportunities:
Real-time condition monitoring to support in taking prompt actions. Upgraded asset management is growingly needed across almost every vertical. Solution providers equipped with AI and ML can collect and turn the vast amount of customer-related data into significant insights, as IoT generates a huge amount of data from connected devices. AI can also be non-segregated with the IoT devices to improve various aspects of service delivery, such as predictive maintenance and quality assessment, without the need for any human interference. The real-time inputs from sensors, actuators, and other control parameters would not only predict embryonic asset failures but also support companies monitor in real-time and take quick actions.
Market Segmentation
Segmentation Analysis of Predictive Maintenance Market:
Based on the Components, the solution component accounted for the largest market share during the forecast period. Owing to the rising concern of organizations towards cutting down the cost and advancement in the uptime of equipment.
Based on Deployment Type, the on-premise segment is expected to dominate the overall predictive maintenance market and is anticipated to maintain its dominance over the forecast period. This is imputed to its modular sensors and easier deployments in pre-existing equipment. Nevertheless, cloud-based predictive maintenance solutions are anticipated to exhibit the highest growth rate over the projected period, due to remote accessibility, direct IT control, efficient resource internal data delivery & handling, faster data processing using advance predictive analytics, utilization, and cost-effectiveness.
Based on the Organization Size, the large enterprise segment dominates the market over the forecast period. These enterprises are developing and automating their operational maintenance process by using these solutions. Furthermore, the cost related to downtime and assets in large enterprises is very high. To reduce these challenges predictive maintenance solutions are progressively being deployed in large enterprises over the world.
Based on the Industry Vertical, the manufacturing segment is expected to dominate the global market during the forecast period. The increasing requirement for maintenance of producing equipment such as machinery, industrial robots, elevators, and pumps for decreasing the overall downtime is turning the adoption of predictive maintenance solutions and services in the manufacturing segment. Furthermore, the growing automation in the manufacturing sector coupled with Industry 4.0 is also expected to drive the demand for these solutions to protect the high-end equipment from losses.
Regional Analysis of Predictive Maintenance Market:
North America is expected to hold a maximum market share over the forecast period. The region is the market commander in the advancement and acquisition of advanced predictive maintenance solutions. This can be assigned to the presence of a large number of leading solutions and service providers. Furthermore, higher investments made in developing technologies such as IoT, artificial intelligence, and machine learning are expected to support the region to maintain its dominant position shortly. Moreover, higher awareness related to predictive maintenance measures and their importance is also producing significant demand for these solutions.
The Asia Pacific is expected to observe significant market share during the forecast period. The higher growth of the market in the region is especially attributed to huge investments done by public and private sectors for the improvement of asset maintenance solutions. Hence, increasing the demand for predictive maintenance solutions deployed for automating the maintenance process of the plant. Furthermore, the higher availability of cheap labor in the region has led to the establishment of a massive number of producing units in the region. Furthermore, growing concerns for decreasing overall downtime and operation costs in producing plants are compelling the plant owners to deploy these solutions.
Europe is expected to hold a significant market share during the forecast period. The high demand for predictive maintenance solutions, due to the rising organizational investments and consciousness about the benefits of predictive maintenance technology to reach competitive advantages.
The Middle East and Africa are expected to observe a stable growth rate in the predictive maintenance market. Growing demand for more cost-efficient predictive maintenance solutions and a tendency towards minimizing machine breakdowns will create the growth of the predictive maintenance market over the region.
Players Covered in Predictive Maintenance Market are:
- Google (US)
- IBM (US)
- Oracle(US)
- Microsoft (US)
- Sigma Industrial Precision (Spain)
- C3 IoT (US)
- Hitachi (Japan)
- RapidMiner (US)
- PTC (US)
- GE (US)
- Schneider Electric (France)
- SAS (US)
- TIBCO (US)
- Softweb Solutions (US)
- A system (France)
- Ecolibrium Energy (India)
- Fiix Software (Canada)
- OPEX Group (UK)
- Seebo (Israel)
- Dingo (Australia)
- Software AG (Germany)
- HPE (US)
- Uptake (US)
- AWS (US)
- Micro Focus (UK)
- SAP (Germany)
- Splunk (US)
- Altair (US)
- ReliaSol (Netherlands)
Key Industry Developments of Predictive Maintenance Market
- In February 2024, Siemens is releasing a new generative artificial intelligence (AI) functionality into its predictive maintenance solution Senseye Predictive Maintenance. This advance makes predictive maintenance more conversational and intuitive. Through this new release of Senseye Predictive Maintenance with generative AI functionality, Siemens will make human-machine interactions and predictive maintenance faster and more efficient by enhancing proven machine learning capabilities with generative AI.
- In March 2024, Oracle introduced Oracle Smart Operations, a new supply chain execution feature in its Fusion Cloud Supply Chain & Manufacturing (SCM). This feature, powered by AI, can enhance productivity, and quality, reduce unplanned downtime, and improve operational visibility. The new capabilities, which are part of Oracle Fusion Cloud Manufacturing and Oracle Fusion Cloud Maintenance, aim to help organizations stay competitive by enhancing factory efficiency, reducing unplanned downtime risks, and expanding visibility across operations. Oracle Smart Operations offers connected, intelligent, and automated capabilities, enabling customers to make better business decisions with agile execution.
Global Predictive Maintenance Market |
|||
Base Year: |
2023 |
Forecast Period: |
2024-2032 |
Historical Data: |
2017 to 2023 |
Market Size in 2023: |
USD 7.13 Bn. |
Forecast Period 2024-32 CAGR: |
23.39 % |
Market Size in 2032: |
USD 47.27 Bn. |
Segments Covered: |
By Component |
|
|
By Deployment |
|
||
By Vertical |
|
||
By Region |
|
||
Key Market Drivers: |
|
||
Key Market Restraints: |
|
||
Key Opportunities: |
|
||
Companies Covered in the report: |
|
Chapter 1: Introduction
ā1.1 Research Objectives
ā1.2 Research Methodology
ā1.3 Research Process
ā1.4 Scope and Coverage
āā1.4.1 Market Definition
āā1.4.2 Key Questions Answered
ā1.5 Market Segmentation
Chapter 2:Executive Summary
Chapter 3:Growth Opportunities By Segment
ā3.1 By Component
ā3.2 By Deployment
ā3.3 By Vertical
Chapter 4: Market Landscape
ā4.1 Porter's Five Forces Analysis
āā4.1.1 Bargaining Power of Supplier
āā4.1.2 Threat of New Entrants
āā4.1.3 Threat of Substitutes
āā4.1.4 Competitive Rivalry
āā4.1.5 Bargaining Power Among Buyers
ā4.2 Industry Value Chain Analysis
ā4.3 Market Dynamics
āā4.3.1 Drivers
āā4.3.2 Restraints
āā4.3.3 Opportunities
āā4.5.4 Challenges
ā4.4 Pestle Analysis
ā4.5 Technological Roadmap
ā4.6 Regulatory Landscape
ā4.7 SWOT Analysis
ā4.8 Price Trend Analysis
ā4.9 Patent Analysis
ā4.10 Analysis of the Impact of Covid-19
āā4.10.1 Impact on the Overall Market
āā4.10.2 Impact on the Supply Chain
āā4.10.3 Impact on the Key Manufacturers
āā4.10.4 Impact on the Pricing
Chapter 5: Predictive Maintenance Market by Component
ā5.1 Predictive Maintenance Market Overview Snapshot and Growth Engine
ā5.2 Predictive Maintenance Market Overview
ā5.3 Solutions
āā5.3.1 Introduction and Market Overview
āā5.3.2 Historic and Forecasted Market Size (2016-2028F)
āā5.3.3 Key Market Trends, Growth Factors and Opportunities
āā5.3.4 Solutions: Grographic Segmentation
ā5.4 Services
āā5.4.1 Introduction and Market Overview
āā5.4.2 Historic and Forecasted Market Size (2016-2028F)
āā5.4.3 Key Market Trends, Growth Factors and Opportunities
āā5.4.4 Services: Grographic Segmentation
Chapter 6: Predictive Maintenance Market by Deployment
ā6.1 Predictive Maintenance Market Overview Snapshot and Growth Engine
ā6.2 Predictive Maintenance Market Overview
ā6.3 Cloud
āā6.3.1 Introduction and Market Overview
āā6.3.2 Historic and Forecasted Market Size (2016-2028F)
āā6.3.3 Key Market Trends, Growth Factors and Opportunities
āā6.3.4 Cloud: Grographic Segmentation
ā6.4 On-Premise
āā6.4.1 Introduction and Market Overview
āā6.4.2 Historic and Forecasted Market Size (2016-2028F)
āā6.4.3 Key Market Trends, Growth Factors and Opportunities
āā6.4.4 On-Premise: Grographic Segmentation
Chapter 7: Predictive Maintenance Market by Vertical
ā7.1 Predictive Maintenance Market Overview Snapshot and Growth Engine
ā7.2 Predictive Maintenance Market Overview
ā7.3 Government & Defense
āā7.3.1 Introduction and Market Overview
āā7.3.2 Historic and Forecasted Market Size (2016-2028F)
āā7.3.3 Key Market Trends, Growth Factors and Opportunities
āā7.3.4 Government & Defense: Grographic Segmentation
ā7.4 Energy & Utilities
āā7.4.1 Introduction and Market Overview
āā7.4.2 Historic and Forecasted Market Size (2016-2028F)
āā7.4.3 Key Market Trends, Growth Factors and Opportunities
āā7.4.4 Energy & Utilities: Grographic Segmentation
ā7.5 Manufacturing
āā7.5.1 Introduction and Market Overview
āā7.5.2 Historic and Forecasted Market Size (2016-2028F)
āā7.5.3 Key Market Trends, Growth Factors and Opportunities
āā7.5.4 Manufacturing: Grographic Segmentation
ā7.6 Healthcare
āā7.6.1 Introduction and Market Overview
āā7.6.2 Historic and Forecasted Market Size (2016-2028F)
āā7.6.3 Key Market Trends, Growth Factors and Opportunities
āā7.6.4 Healthcare: Grographic Segmentation
ā7.7 Transportation & Logistics
āā7.7.1 Introduction and Market Overview
āā7.7.2 Historic and Forecasted Market Size (2016-2028F)
āā7.7.3 Key Market Trends, Growth Factors and Opportunities
āā7.7.4 Transportation & Logistics: Grographic Segmentation
ā7.8 Other Verticals
āā7.8.1 Introduction and Market Overview
āā7.8.2 Historic and Forecasted Market Size (2016-2028F)
āā7.8.3 Key Market Trends, Growth Factors and Opportunities
āā7.8.4 Other Verticals: Grographic Segmentation
Chapter 8: Company Profiles and Competitive Analysis
ā8.1 Competitive Landscape
āā8.1.1 Competitive Positioning
āā8.1.2 Predictive Maintenance Sales and Market Share By Players
āā8.1.3 Industry BCG Matrix
āā8.1.4 Ansoff Matrix
āā8.1.5 Predictive Maintenance Industry Concentration Ratio (CR5 and HHI)
āā8.1.6 Top 5 Predictive Maintenance Players Market Share
āā8.1.7 Mergers and Acquisitions
āā8.1.8 Business Strategies By Top Players
ā8.2 GOOGLE
āā8.2.1 Company Overview
āā8.2.2 Key Executives
āā8.2.3 Company Snapshot
āā8.2.4 Operating Business Segments
āā8.2.5 Product Portfolio
āā8.2.6 Business Performance
āā8.2.7 Key Strategic Moves and Recent Developments
āā8.2.8 SWOT Analysis
ā8.3 IBM
ā8.4 ORACLE
ā8.5 MICROSOFT
ā8.6 SIGMA INDUSTRIAL PRECISION
ā8.7 C3 IOT
ā8.8 HITACHI
ā8.9 RAPIDMINER
ā8.10 PTC
ā8.11 GE
ā8.12 SCHNEIDER ELECTRIC
ā8.13 SAS
ā8.14 TIBCO
ā8.15 SOFTWEB SOLUTIONS
ā8.16 A SYSTEM
ā8.17 ECOLIBRIUM ENERGY
ā8.18 FIIX SOFTWARE
ā8.19 OPEX GROUP
ā8.20 SEEBO
ā8.21 DINGO
ā8.22 SOFTWARE AG
ā8.23 HPE
ā8.24 UPTAKE
ā8.25 AWS
ā8.26 MICRO FOCUS
ā8.27 SAP
ā8.28 SPLUNK
ā8.29 ALTAIR
ā8.30 RELIASOL
ā8.31 OTHER MAJOR PLAYERS
Chapter 9: Global Predictive Maintenance Market Analysis, Insights and Forecast, 2016-2028
ā9.1 Market Overview
ā9.2 Historic and Forecasted Market Size By Component
āā9.2.1 Solutions
āā9.2.2 Services
ā9.3 Historic and Forecasted Market Size By Deployment
āā9.3.1 Cloud
āā9.3.2 On-Premise
ā9.4 Historic and Forecasted Market Size By Vertical
āā9.4.1 Government & Defense
āā9.4.2 Energy & Utilities
āā9.4.3 Manufacturing
āā9.4.4 Healthcare
āā9.4.5 Transportation & Logistics
āā9.4.6 Other Verticals
Chapter 10: North America Predictive Maintenance Market Analysis, Insights and Forecast, 2016-2028
ā10.1 Key Market Trends, Growth Factors and Opportunities
ā10.2 Impact of Covid-19
ā10.3 Key Players
ā10.4 Key Market Trends, Growth Factors and Opportunities
ā10.4 Historic and Forecasted Market Size By Component
āā10.4.1 Solutions
āā10.4.2 Services
ā10.5 Historic and Forecasted Market Size By Deployment
āā10.5.1 Cloud
āā10.5.2 On-Premise
ā10.6 Historic and Forecasted Market Size By Vertical
āā10.6.1 Government & Defense
āā10.6.2 Energy & Utilities
āā10.6.3 Manufacturing
āā10.6.4 Healthcare
āā10.6.5 Transportation & Logistics
āā10.6.6 Other Verticals
ā10.7 Historic and Forecast Market Size by Country
āā10.7.1 U.S.
āā10.7.2 Canada
āā10.7.3 Mexico
Chapter 11: Europe Predictive Maintenance Market Analysis, Insights and Forecast, 2016-2028
ā11.1 Key Market Trends, Growth Factors and Opportunities
ā11.2 Impact of Covid-19
ā11.3 Key Players
ā11.4 Key Market Trends, Growth Factors and Opportunities
ā11.4 Historic and Forecasted Market Size By Component
āā11.4.1 Solutions
āā11.4.2 Services
ā11.5 Historic and Forecasted Market Size By Deployment
āā11.5.1 Cloud
āā11.5.2 On-Premise
ā11.6 Historic and Forecasted Market Size By Vertical
āā11.6.1 Government & Defense
āā11.6.2 Energy & Utilities
āā11.6.3 Manufacturing
āā11.6.4 Healthcare
āā11.6.5 Transportation & Logistics
āā11.6.6 Other Verticals
ā11.7 Historic and Forecast Market Size by Country
āā11.7.1 Germany
āā11.7.2 U.K.
āā11.7.3 France
āā11.7.4 Italy
āā11.7.5 Russia
āā11.7.6 Spain
āā11.7.7 Rest of Europe
Chapter 12: Asia-Pacific Predictive Maintenance Market Analysis, Insights and Forecast, 2016-2028
ā12.1 Key Market Trends, Growth Factors and Opportunities
ā12.2 Impact of Covid-19
ā12.3 Key Players
ā12.4 Key Market Trends, Growth Factors and Opportunities
ā12.4 Historic and Forecasted Market Size By Component
āā12.4.1 Solutions
āā12.4.2 Services
ā12.5 Historic and Forecasted Market Size By Deployment
āā12.5.1 Cloud
āā12.5.2 On-Premise
ā12.6 Historic and Forecasted Market Size By Vertical
āā12.6.1 Government & Defense
āā12.6.2 Energy & Utilities
āā12.6.3 Manufacturing
āā12.6.4 Healthcare
āā12.6.5 Transportation & Logistics
āā12.6.6 Other Verticals
ā12.7 Historic and Forecast Market Size by Country
āā12.7.1 China
āā12.7.2 India
āā12.7.3 Japan
āā12.7.4 Singapore
āā12.7.5 Australia
āā12.7.6 New Zealand
āā12.7.7 Rest of APAC
Chapter 13: Middle East & Africa Predictive Maintenance Market Analysis, Insights and Forecast, 2016-2028
ā13.1 Key Market Trends, Growth Factors and Opportunities
ā13.2 Impact of Covid-19
ā13.3 Key Players
ā13.4 Key Market Trends, Growth Factors and Opportunities
ā13.4 Historic and Forecasted Market Size By Component
āā13.4.1 Solutions
āā13.4.2 Services
ā13.5 Historic and Forecasted Market Size By Deployment
āā13.5.1 Cloud
āā13.5.2 On-Premise
ā13.6 Historic and Forecasted Market Size By Vertical
āā13.6.1 Government & Defense
āā13.6.2 Energy & Utilities
āā13.6.3 Manufacturing
āā13.6.4 Healthcare
āā13.6.5 Transportation & Logistics
āā13.6.6 Other Verticals
ā13.7 Historic and Forecast Market Size by Country
āā13.7.1 Turkey
āā13.7.2 Saudi Arabia
āā13.7.3 Iran
āā13.7.4 UAE
āā13.7.5 Africa
āā13.7.6 Rest of MEA
Chapter 14: South America Predictive Maintenance Market Analysis, Insights and Forecast, 2016-2028
ā14.1 Key Market Trends, Growth Factors and Opportunities
ā14.2 Impact of Covid-19
ā14.3 Key Players
ā14.4 Key Market Trends, Growth Factors and Opportunities
ā14.4 Historic and Forecasted Market Size By Component
āā14.4.1 Solutions
āā14.4.2 Services
ā14.5 Historic and Forecasted Market Size By Deployment
āā14.5.1 Cloud
āā14.5.2 On-Premise
ā14.6 Historic and Forecasted Market Size By Vertical
āā14.6.1 Government & Defense
āā14.6.2 Energy & Utilities
āā14.6.3 Manufacturing
āā14.6.4 Healthcare
āā14.6.5 Transportation & Logistics
āā14.6.6 Other Verticals
ā14.7 Historic and Forecast Market Size by Country
āā14.7.1 Brazil
āā14.7.2 Argentina
āā14.7.3 Rest of SA
Chapter 15 Investment Analysis
Chapter 16 Analyst Viewpoint and Conclusion
Global Predictive Maintenance Market |
|||
Base Year: |
2023 |
Forecast Period: |
2024-2032 |
Historical Data: |
2017 to 2023 |
Market Size in 2023: |
USD 7.13 Bn. |
Forecast Period 2024-32 CAGR: |
23.39 % |
Market Size in 2032: |
USD 47.27 Bn. |
Segments Covered: |
By Component |
|
|
By Deployment |
|
||
By Vertical |
|
||
By Region |
|
||
Key Market Drivers: |
|
||
Key Market Restraints: |
|
||
Key Opportunities: |
|
||
Companies Covered in the report: |
|
Frequently Asked Questions :
The forecast period in the Predictive Maintenance Market research report is 2024-2032.
Google (US), IBM (US),Oracle(US), Microsoft (US), Sigma Industrial Precision (Spain), C3 IoT (US), Hitachi (Japan), RapidMiner (US), PTC (US),GE (US), Schneider Electric (France), SAS (US), TIBCO (US), Softweb Solutions (US), A system (France), Ecolibrium Energy (India), Fiix Software (Canada), OPEX Group (UK), Seebo (Israel), Dingo (Australia), Software AG (Germany), HPE (US), Uptake (US),AWS (US), Micro Focus (UK), SAP (Germany), Splunk (US), Altair (US), ReliaSol (Netherlands) and other major players.
The Predictive Maintenance Market is segmented into Component, Deployment, Vertical, and region. By Component, the market is categorized into Solutions, Services. By Deployment, the market is categorized into Cloud, On-Premise. By Vertical, the market is categorized into Government & Defense, Energy & Utilities, Manufacturing, Healthcare, Transportation & Logistics, Other Verticals. By region, it is analyzed across North America (U.S.; Canada; Mexico), Europe (Germany; U.K.; France; Italy; Russia; Spain, etc.), Asia-Pacific (China; India; Japan; Southeast Asia, etc.), South America (Brazil; Argentina, etc.), Middle East & Africa (Saudi Arabia; South Africa, etc.).
Predictive maintenance is a technology that applies for the data analysis tools and techniques to determine inconsistency in the operation and possible defects in equipment and processes so we can fix them before they fail.
Predictive Maintenance Market Size Was Valued at USD 7.13 Billion in 2023 and is Projected to Reach USD 47.27 Billion by 2032, Growing at a CAGR of 23.39% From 2024-2032